Skip to main content

Advertisement

Log in

Finite Gap Jacobi Matrices, II. The Szegő Class

  • Published:
Constructive Approximation Aims and scope

Abstract

Let \(\frak{e}\subset\mathbb{R}\) be a finite union of disjoint closed intervals. We study measures whose essential support is \({\frak{e}}\) and whose discrete eigenvalues obey a 1/2-power condition. We show that a Szegő condition is equivalent to

$$\limsup\frac{a_1\cdots a_n}{\mathrm{cap}(\frak{e})^n}>0$$

(this includes prior results of Widom and Peherstorfer–Yuditskii). Using Remling’s extension of the Denisov–Rakhmanov theorem and an analysis of Jost functions, we provide a new proof of Szegő asymptotics, including L 2 asymptotics on the spectrum. We make heavy use of the covering map formalism of Sodin–Yuditskii as presented in our first paper in this series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aptekarev, A.I.: Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda chains. Math. USSR Sb. 53, 233–260 (1986). Russian original in Mat. Sb. (N.S.) 125(167), 231–258 (1984)

    Article  MATH  Google Scholar 

  2. Christiansen, J., Simon, B., Zinchenko, M.: Finite gap Jacobi matrices, I. The isospectral torus, Constr. Approx., to appear

  3. Christiansen, J., Simon, B., Zinchenko, M.: Finite gap Jacobi matrices, III. Beyond the Szegő class, in preparation

  4. Damanik, D., Killip, R., Simon, B.: Perturbations of orthogonal polynomials with periodic recursion coefficients. Ann. Math., to appear

  5. Damanik, D., Simon, B.: Jost functions and Jost solutions for Jacobi matrices, I. A necessary and sufficient condition for Szegő asymptotics. Invent. Math. 165, 1–50 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Denisov, S.A.: On Rakhmanov’s theorem for Jacobi matrices. Proc. Am. Math. Soc. 132, 847–852 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Frank, R., Simon, B., Weidl, T.: Eigenvalue bounds for perturbations of Schrödinger operators and Jacobi matrices with regular ground states. Commun. Math. Phys. 282, 199–208 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garnett, J.B.: Bounded Analytic Functions. Pure and Applied Math., vol. 96. Academic Press, New York (1981)

    MATH  Google Scholar 

  9. Geronimus, Ya.L.: Orthogonal Polynomials: Estimates, Asymptotic Formulas, and Series of Polynomials Orthogonal on the Unit Circle and on an Interval. Consultants Bureau, New York (1961)

    Google Scholar 

  10. Hundertmark, D., Simon, B.: Eigenvalue bounds in the gaps of Schrödinger operators and Jacobi matrices. J. Math. Anal. Appl. 340, 892–900 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Killip, R., Simon, B.: Sum rules for Jacobi matrices and their applications to spectral theory. Ann. Math. 158, 253–321 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Last, Y., Simon, B.: The essential spectrum of Schrödinger, Jacobi, and CMV operators. J. Anal. Math. 98, 183–220 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nevai, P.: Orthogonal polynomials. Mem. Am. Math. Soc. 18(213), 1–183 (1979)

    MathSciNet  Google Scholar 

  14. Peherstorfer, F., Yuditskii, P.: Private communication

  15. Peherstorfer, F., Yuditskii, P.: Asymptotics of orthonormal polynomials in the presence of a denumerable set of mass points. Proc. Am. Math. Soc. 129, 3213–3220 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Peherstorfer, F., Yuditskii, P.: Asymptotic behavior of polynomials orthonormal on a homogeneous set. J. Anal. Math. 89, 113–154 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Peherstorfer, F., Yuditskii, P.: Remark on the paper “Asymptotic behavior of polynomials orthonormal on a homogeneous set”. arXiv:math.SP/0611856

  18. Remling, C.: The absolutely continuous spectrum of Jacobi matrices. Preprint

  19. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  20. Shohat, J.A.: Théorie générale des polinomes orthogonaux de Tchebichef. Mém. Sci. Math. 66, 1–69 (1934)

    Google Scholar 

  21. Simon, B.: A canonical factorization for meromorphic Herglotz functions on the unit disk and sum rules for Jacobi matrices. J. Funct. Anal. 214, 396–409 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Simon, B.: OPUC on one foot. Bull. Am. Math. Soc. 42, 431–460 (2005)

    Article  MATH  Google Scholar 

  23. Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory. AMS Colloquium Publications, vol. 54.1. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  24. Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory. AMS Colloquium Publications, vol. 54.2. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  25. Simon, B.: Equilibrium measures and capacities in spectral theory. Inverse Probl. Imaging 1, 713–772 (2007)

    MATH  MathSciNet  Google Scholar 

  26. Simon, B.: Szegő’s Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials. Princeton University Press (expected 2010)

  27. Simon, B., Zlatoš, A.: Sum rules and the Szegő condition for orthogonal polynomials on the real line. Commun. Math. Phys. 242, 393–423 (2003)

    MATH  Google Scholar 

  28. Sodin, M., Yuditskii, P.: Almost periodic Jacobi matrices with homogeneous spectrum, infinite-dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions. J. Geom. Anal. 7, 387–435 (1997)

    MATH  MathSciNet  Google Scholar 

  29. Stahl, H., Totik, V.: General Orthogonal Polynomials. Encyclopedia of Mathematics and its Applications, vol. 43. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  30. Szegő, G.: Beiträge zur Theorie der Toeplitzschen Formen. Math. Z. 6, 167–202 (1920)

    Article  MathSciNet  Google Scholar 

  31. Szegő, G.: Beiträge zur Theorie der Toeplitzschen Formen, II. Math. Z. 9, 167–190 (1921)

    Article  MathSciNet  Google Scholar 

  32. Szegő, G.: Über den asymptotischen Ausdruck von Polynomen, die durch eine Orthogonalitätseigenschaft definiert sind. Math. Ann. 86, 114–139 (1922)

    Article  MathSciNet  Google Scholar 

  33. Szegő, G.: Orthogonal Polynomials. AMS Colloquium Publications, vol. 23, American Mathematical Society, Providence (1939). 3rd edn in 1967

    Google Scholar 

  34. Widom, H.: Extremal polynomials associated with a system of curves in the complex plane. Adv. Math. 3, 127–232 (1969)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Simon.

Additional information

Communicated by Vilmos Totik.

J.S. Christiansen was supported in part by a Steno Research Grant from FNU, the Danish Research Council. B. Simon was supported in part by NSF grant DMS-0652919.

Maxim Zinchenko was supported in part by NSF grant DMS-0965411.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christiansen, J.S., Simon, B. & Zinchenko, M. Finite Gap Jacobi Matrices, II. The Szegő Class. Constr Approx 33, 365–403 (2011). https://doi.org/10.1007/s00365-010-9094-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-010-9094-7

Keywords

Mathematics Subject Classification (2000)

Navigation