Skip to main content
Log in

QMC Rules of Arbitrary High Order: Reproducing Kernel Hilbert Space Approach

  • Published:
Constructive Approximation Aims and scope

Abstract

In this paper we consider numerical integration of smooth functions lying in a particular reproducing kernel Hilbert space. We show that the worst-case error of numerical integration in this space converges at the optimal rate, up to some power of a log N factor. A similar result is shown for the mean square worst-case error, where the bound for the latter is always better than the bound for the square worst-case error. Finally, bounds for integration errors of functions lying in the reproducing kernel Hilbert space are given. The paper concludes by illustrating the theory with numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1971)

    Google Scholar 

  2. Caflisch, R.E., Morokoff, W.J., Owen, A.B.: Valuation of mortgage backed securities using Brownian Bridge to reduce effective dimension. J. Comput. Finance 1, 27–46 (1997)

    Google Scholar 

  3. Chrestenson, H.E.: A class of generalized Walsh functions. Pac. J. Math. 5, 17–31 (1955)

    MATH  MathSciNet  Google Scholar 

  4. Dick, J.: Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions. SIAM J. Numer. Anal. 45, 2141–2176 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dick, J.: The decay of the Walsh coefficients of smooth functions. Bull. Aust. Math. Soc. (2009, to appear)

  6. Dick, J.: Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal. 46, 1519–1553 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dick, J., Baldeaux, J.: Equidistribution properties of generalized nets and sequences. In: L’Ecuyer, P., Owen. A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008. Springer (2010, to appear)

  8. Dick, J., Kritzer, P.: Duality theory and propagation rules for digital nets of higher order. Math. Comput. (2010, to appear)

  9. Dick, J., Niederreiter, H.: On the exact t-value of Niederreiter and Sobol’ sequences. J. Complex. 24, 572–581 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dick, J., Pillichshammer, F.: Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces. J. Complex. 21, 149–195 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dick, J., Pillichshammer, F.: On the mean square weighted ℒ2 discrepancy of randomized digital (t,m,s)-nets over ℤ2. Acta Arith. 117, 371–403 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dick, J., Kuo, F., Pillichshammer, F., Sloan, I.H.: Construction algorithms for polynomial lattice rules for multivariate integration. Math. Comput. 74, 1895–1921 (2005)

    MathSciNet  Google Scholar 

  13. Dick, J., Kritzer, P., Pillichshammer, F., Schmid, W.Ch.: On the existence of higher order polynomial lattices based on a generalized figure of merit. J. Complex. 23, 581–593 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Faure, H.: Discrépance de suites associées à un système de numération (en dimension s). Acta Arith. 41, 337–351 (1982)

    MATH  MathSciNet  Google Scholar 

  15. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18, 209–232 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Manag. Sci. 46, 1214–1235 (2000)

    Article  Google Scholar 

  17. L’Ecuyer, P., Lemieux, C.: Recent advances in randomized quasi-Monte Carlo methods. In: Dror, M., L’Ecuyer, P., Szidarovszki, F. (eds.) Modeling Uncertainty. Internat. Ser. Oper. Res. Management Sci., vol. 46, pp. 419–474. Kluwer Academic, Boston (2002)

    Google Scholar 

  18. Matoušek, J.: Geometric Discrepancy. Algorithms Combin., vol. 18. Springer, Berlin (1999)

    MATH  Google Scholar 

  19. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

    MATH  Google Scholar 

  20. Niederreiter, H., Pirsic, G.: Duality for digital nets and its applications. Acta Arith. 97, 173–182 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Niederreiter, H., Xing, Ch.: Global function fields with many rational places and their applications. In: Mullin, R.C., Mullen, G.L. (eds.) Finite Fields: Theory, Applications, and Algorithms, Waterloo, ON, 1997. Contemp. Math., vol. 225, pp. 87–111. Amer. Math. Soc., Providence (1999)

    Google Scholar 

  22. Pirsic, G.: A software implementation of Niederreiter–Xing sequences. In: Fang, K.-T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods, 2000 (Hong Kong), pp. 434–445. Springer, Berlin (2002)

    Google Scholar 

  23. Sharygin, I.F.: A lower estimate for the error of quadrature formulas for certain classes of functions. Zh. Vychisl. Mat. i Mat. Fiz. 3, 370–376 (1963)

    Google Scholar 

  24. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1994)

    MATH  Google Scholar 

  25. Sloan, I.H., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complex. 14, 1–33 (1998)

    Article  MATH  Google Scholar 

  26. Sloan, I.H., Woźniakowski, H.: Tractability of multivariate integration for weighted Korobov classes. J. Complex. 17, 697–721 (2001)

    Article  MATH  Google Scholar 

  27. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963)

    Google Scholar 

  28. Sobol’, I.M.: Distribution of points in a cube and approximate evaluation of integrals. Zh. Vychisl. Mat. i Mat. Fiz. 7, 784–802 (1967)

    MathSciNet  Google Scholar 

  29. Walsh, J.L.: A closed set of normal orthogonal functions. Am. J. Math. 45, 5–24 (1923)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Baldeaux.

Additional information

Communicated by Ian Sloan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldeaux, J., Dick, J. QMC Rules of Arbitrary High Order: Reproducing Kernel Hilbert Space Approach. Constr Approx 30, 495–527 (2009). https://doi.org/10.1007/s00365-009-9074-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-009-9074-y

Keywords

Mathematics Subject Classification (2000)

Navigation