Skip to main content
Log in

Bispectrality of Multivariable Racah–Wilson Polynomials

  • Published:
Constructive Approximation Aims and scope

Abstract

We construct a commutative algebra \({\mathcal{A}}_{x}\) of difference operators in ℝp, depending on p+3 parameters, which is diagonalized by the multivariable Racah polynomials R p (n;x) considered by Tratnik (J. Math. Phys. 32(9):2337–2342, 1991). It is shown that for specific values of the variables x=(x 1,x 2,…,x p ) there is a hidden duality between n and x. Analytic continuation allows us to construct another commutative algebra \({\mathcal{A}}_{n}\) in the variables n=(n 1,n 2,…,n p ) which is also diagonalized by R p (n;x). Thus, R p (n;x) solve a multivariable discrete bispectral problem in the sense of Duistermaat and Grünbaum (Commun. Math. Phys. 103(2):177–240, 1986). Since a change of the variables and the parameters in the Racah polynomials gives the multivariable Wilson polynomials (Tratnik in J. Math. Phys. 32(8):2065–2073, 1991), this change of variables and parameters in \({\mathcal{A}}_{x}\) and \({\mathcal{A}}_{n}\) leads to bispectral commutative algebras for the multivariable Wilson polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appell, P., Kampé de Fériet, J.: Fonctions Hypergéométriques et Hypersphériques—Polynomes d’Hermite. Gauthier-Villars, Paris (1926)

    MATH  Google Scholar 

  2. Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 54(319), 55 (1985)

    MathSciNet  Google Scholar 

  3. Bailey, W.N.: Generalized hypergeometric series. Camb. Tracts Math. Math. Phys. 32 (1935)

  4. Bakalov, B., Horozov, E., Yakimov, M.: Highest weight modules over the W 1+∞ algebra and the bispectral problem. Duke Math. J. 93(1), 41–72 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bochner, S.: Über Sturm-Liouvillesche Polynomsysteme. Math. Z. 29(1), 730–736 (1929)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brunat, J.M., Krattenthaler, C., Lascoux, A., Montes, A.: Some composition determinants. Linear Algebra Appl. 416(2–3), 355–364 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cherednik, I.: Double affine Hecke algebras and Macdonald’s conjectures. Ann. Math. (2) 141(1), 191–216 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Commun. Math. Phys. 103(2), 177–240 (1986)

    Article  MATH  Google Scholar 

  9. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications, vol. 81. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  10. Grünbaum, F.A.: Time-band limiting and the bispectral problem. Commun. Pure Appl. Math. 47(3), 307–328 (1994)

    Article  MATH  Google Scholar 

  11. Grünbaum, F.A., Yakimov, M.: Discrete bispectral Darboux transformations from Jacobi operators. Pac. J. Math. 204(2), 395–431 (2002)

    Article  MATH  Google Scholar 

  12. Haine, L., Iliev, P.: Commutative rings of difference operators and an adelic flag manifold. Int. Math. Res. Not. 2000(6), 281–323 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Haine, L., Iliev, P.: Askey–Wilson type functions with bound states. Ramanujan J. 11(3), 285–329 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Harnad, J., Kasman, A. (eds.): The Bispectral Problem (Montréal). CRM Proc. Lecture Notes, vol. 14. AMS, Providence (1998)

    MATH  Google Scholar 

  15. Heckman, G.J., Opdam, E.M.: Root systems and hypergeometric functions I. Compos. Math. 64(3), 329–352 (1987)

    MATH  MathSciNet  Google Scholar 

  16. Iliev, P., Xu, Y.: Discrete orthogonal polynomials and difference equations of several variables. Adv. Math. 212(1), 1–36 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kalnins, E.G., Miller, W. Jr.: Orthogonal polynomials on n-spheres: Gegenbauer, Jacobi and Heun. In: Topics in Polynomials of One and Several Variables and Their Applications, pp. 299–322. World Sci. Publ., River Edge (1993)

    Google Scholar 

  18. Karlin, S., McGregor, J.: Linear growth models with many types and multidimensional Hahn polynomials. In: Askey, R.A. (ed.) Theory and Application of Special Functions, pp. 261–288. Academic Press, New York (1975). Math. Res. Center, Univ. Wisconsin, Publ. No. 35

    Google Scholar 

  19. Koekoek, R., Swarttouw, R.F.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Report No. 98–17, Delft Univ. Tech. (1998)

  20. Koornwinder, T.: Askey-Wilson polynomials for root systems of type BC. In: Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications, Tampa, FL, 1991. Contemp. Math., vol. 138, pp. 189–204. AMS, Providence (1992)

    Google Scholar 

  21. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, London (1995)

    MATH  Google Scholar 

  22. Milch, P.R.: A multi-dimensional linear growth birth and death process. Ann. Math. Stat. 39(3), 727–754 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Physics. Springer, Berlin (1991)

    MATH  Google Scholar 

  24. Sahi, S.: Nonsymmetric Koornwinder polynomials and duality. Ann. Math. (2) 150(1), 267–282 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tratnik, M.V.: Multivariable Meixner, Krawtchouk, and Meixner–Pollaczek polynomials. J. Math. Phys. 30(12), 2740–2749 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tratnik, M.V.: Some multivariable orthogonal polynomials of the Askey tableau-continuous families. J. Math. Phys. 32(8), 2065–2073 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tratnik, M.V.: Some multivariable orthogonal polynomials of the Askey tableau-discrete families. J. Math. Phys. 32(9), 2337–2342 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  28. van Diejen, J.F.: Self-dual Koornwinder–Macdonald polynomials. Invent. Math. 126(2), 319–339 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wilson, G.: Collisions of Calogero–Moser particles and an adelic Grassmannian (with an appendix by I.G. Macdonald). Invent. Math. 133(1), 1–41 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Xu, Y.: On discrete orthogonal polynomials of several variables. Adv. Appl. Math. 33(3), 615–632 (2004)

    Article  MATH  Google Scholar 

  31. Zubelli, J.P., Magri, F.: Differential equations in the spectral parameter, Darboux transformations and a hierarchy of master symmetries for KdV. Commun. Math. Phys. 141(2), 329–351 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plamen Iliev.

Additional information

Communicated by Edward B. Saff.

The first author was partially supported by an NSF grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geronimo, J.S., Iliev, P. Bispectrality of Multivariable Racah–Wilson Polynomials. Constr Approx 31, 417–457 (2010). https://doi.org/10.1007/s00365-009-9045-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-009-9045-3

Keywords

Mathematics Subject Classification (2000)

Navigation