Abstract
We construct a commutative algebra \({\mathcal{A}}_{x}\) of difference operators in ℝp, depending on p+3 parameters, which is diagonalized by the multivariable Racah polynomials R p (n;x) considered by Tratnik (J. Math. Phys. 32(9):2337–2342, 1991). It is shown that for specific values of the variables x=(x 1,x 2,…,x p ) there is a hidden duality between n and x. Analytic continuation allows us to construct another commutative algebra \({\mathcal{A}}_{n}\) in the variables n=(n 1,n 2,…,n p ) which is also diagonalized by R p (n;x). Thus, R p (n;x) solve a multivariable discrete bispectral problem in the sense of Duistermaat and Grünbaum (Commun. Math. Phys. 103(2):177–240, 1986). Since a change of the variables and the parameters in the Racah polynomials gives the multivariable Wilson polynomials (Tratnik in J. Math. Phys. 32(8):2065–2073, 1991), this change of variables and parameters in \({\mathcal{A}}_{x}\) and \({\mathcal{A}}_{n}\) leads to bispectral commutative algebras for the multivariable Wilson polynomials.
Similar content being viewed by others
References
Appell, P., Kampé de Fériet, J.: Fonctions Hypergéométriques et Hypersphériques—Polynomes d’Hermite. Gauthier-Villars, Paris (1926)
Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 54(319), 55 (1985)
Bailey, W.N.: Generalized hypergeometric series. Camb. Tracts Math. Math. Phys. 32 (1935)
Bakalov, B., Horozov, E., Yakimov, M.: Highest weight modules over the W 1+∞ algebra and the bispectral problem. Duke Math. J. 93(1), 41–72 (1998)
Bochner, S.: Über Sturm-Liouvillesche Polynomsysteme. Math. Z. 29(1), 730–736 (1929)
Brunat, J.M., Krattenthaler, C., Lascoux, A., Montes, A.: Some composition determinants. Linear Algebra Appl. 416(2–3), 355–364 (2006)
Cherednik, I.: Double affine Hecke algebras and Macdonald’s conjectures. Ann. Math. (2) 141(1), 191–216 (1995)
Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Commun. Math. Phys. 103(2), 177–240 (1986)
Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications, vol. 81. Cambridge University Press, Cambridge (2001)
Grünbaum, F.A.: Time-band limiting and the bispectral problem. Commun. Pure Appl. Math. 47(3), 307–328 (1994)
Grünbaum, F.A., Yakimov, M.: Discrete bispectral Darboux transformations from Jacobi operators. Pac. J. Math. 204(2), 395–431 (2002)
Haine, L., Iliev, P.: Commutative rings of difference operators and an adelic flag manifold. Int. Math. Res. Not. 2000(6), 281–323 (2000)
Haine, L., Iliev, P.: Askey–Wilson type functions with bound states. Ramanujan J. 11(3), 285–329 (2006)
Harnad, J., Kasman, A. (eds.): The Bispectral Problem (Montréal). CRM Proc. Lecture Notes, vol. 14. AMS, Providence (1998)
Heckman, G.J., Opdam, E.M.: Root systems and hypergeometric functions I. Compos. Math. 64(3), 329–352 (1987)
Iliev, P., Xu, Y.: Discrete orthogonal polynomials and difference equations of several variables. Adv. Math. 212(1), 1–36 (2007)
Kalnins, E.G., Miller, W. Jr.: Orthogonal polynomials on n-spheres: Gegenbauer, Jacobi and Heun. In: Topics in Polynomials of One and Several Variables and Their Applications, pp. 299–322. World Sci. Publ., River Edge (1993)
Karlin, S., McGregor, J.: Linear growth models with many types and multidimensional Hahn polynomials. In: Askey, R.A. (ed.) Theory and Application of Special Functions, pp. 261–288. Academic Press, New York (1975). Math. Res. Center, Univ. Wisconsin, Publ. No. 35
Koekoek, R., Swarttouw, R.F.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Report No. 98–17, Delft Univ. Tech. (1998)
Koornwinder, T.: Askey-Wilson polynomials for root systems of type BC. In: Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications, Tampa, FL, 1991. Contemp. Math., vol. 138, pp. 189–204. AMS, Providence (1992)
Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, London (1995)
Milch, P.R.: A multi-dimensional linear growth birth and death process. Ann. Math. Stat. 39(3), 727–754 (1968)
Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Physics. Springer, Berlin (1991)
Sahi, S.: Nonsymmetric Koornwinder polynomials and duality. Ann. Math. (2) 150(1), 267–282 (1999)
Tratnik, M.V.: Multivariable Meixner, Krawtchouk, and Meixner–Pollaczek polynomials. J. Math. Phys. 30(12), 2740–2749 (1989)
Tratnik, M.V.: Some multivariable orthogonal polynomials of the Askey tableau-continuous families. J. Math. Phys. 32(8), 2065–2073 (1991)
Tratnik, M.V.: Some multivariable orthogonal polynomials of the Askey tableau-discrete families. J. Math. Phys. 32(9), 2337–2342 (1991)
van Diejen, J.F.: Self-dual Koornwinder–Macdonald polynomials. Invent. Math. 126(2), 319–339 (1996)
Wilson, G.: Collisions of Calogero–Moser particles and an adelic Grassmannian (with an appendix by I.G. Macdonald). Invent. Math. 133(1), 1–41 (1998)
Xu, Y.: On discrete orthogonal polynomials of several variables. Adv. Appl. Math. 33(3), 615–632 (2004)
Zubelli, J.P., Magri, F.: Differential equations in the spectral parameter, Darboux transformations and a hierarchy of master symmetries for KdV. Commun. Math. Phys. 141(2), 329–351 (1991)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Edward B. Saff.
The first author was partially supported by an NSF grant.
Rights and permissions
About this article
Cite this article
Geronimo, J.S., Iliev, P. Bispectrality of Multivariable Racah–Wilson Polynomials. Constr Approx 31, 417–457 (2010). https://doi.org/10.1007/s00365-009-9045-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00365-009-9045-3
Keywords
- Bispectral problem
- Classical multivariable orthogonal polynomials
- Hypergeometric functions
- Askey-scheme