Skip to main content
Log in

Bernstein Operators for Exponential Polynomials

  • Published:
Constructive Approximation Aims and scope

Abstract

Let L be a linear differential operator with constant coefficients of order n and complex eigenvalues λ 0,…,λ n . Assume that the set U n of all solutions of the equation Lf=0 is closed under complex conjugation. If the length of the interval [a,b] is smaller than π/M n , where M n :=max {|Im λ j |:j=0,…,n}, then there exists a basis p n,k , k=0,…,n, of the space U n with the property that each p n,k has a zero of order k at a and a zero of order nk at b, and each p n,k is positive on the open interval (a,b). Under the additional assumption that λ 0 and λ 1 are real and distinct, our first main result states that there exist points a=t 0<t 1<⋅⋅⋅<t n =b and positive numbers α 0,…,α n , such that the operator

$$B_{n}f:=\sum_{k=0}^{n}\alpha _{k}f(t_{k})p_{n,k}(x)$$

satisfies \(B_{n}e^{\lambda _{j}x}=e^{\lambda _{j}x}\) , for j=0,1. The second main result gives a sufficient condition guaranteeing the uniform convergence of B n f to f for each fC[a,b].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldaz, J.M., Kounchev, O., Render, H.: On real-analytic recurrence relations for cardinal exponential B-splines. J. Approx. Theory 145, 253–265 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Borwein, P., Erdélyi, T.: Polynomials and Polynomial Inequalities. Springer, New York (1995)

    MATH  Google Scholar 

  3. Carnicer, J.M., Mainar, E., Peña, J.M.: Critical length for design purposes and extended Chebyshev spaces. Constr. Approx. 20, 55–71 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carnicer, J.M., Mainar, E., Peña, J.M.: Shape preservation regions for six-dimensional space. Adv. Comput. Math. 26, 121–136 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Costantini, P.: Curve and surface construction using variable degree polynomial splines. Comput. Aided Geom. Des. 17, 419–446 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Costantini, P., Lyche, T., Manni, C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. de Boor, C., DeVore, R., Ron, A.: On the construction of multivariate (pre)wavelets. Constr. Approx. 9, 123–166 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Farouki, R.T., Goodman, T.N.T.: On the optimal stability of the Bernstein basis. Math. Comput. 65, 1553–1566 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gelfond, A.O.: On the generalized polynomials of S.N. Bernstein. Izv. Akad. Nauk SSSR Ser. Math. 14, 413–420 (1950) (in Russian)

    MathSciNet  Google Scholar 

  10. Gonsor, D., Neamtu, M.: Null spaces of differential operators, polar forms and splines. J. Approx. Theory 86, 81–107 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goodman, T.N.T., Mazure, M.L.: Blossoming beyond Chebyshev spaces. J. Approx. Theory 109, 48–81 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hirschmann, I.I., Widder, D.V.: Generalized Bernstein polynomials. Duke Math. J. 16, 433–438 (1949)

    Article  MathSciNet  Google Scholar 

  13. Karlin, S.: Total Positivity. Stanford University Press, Stanford (1968)

    MATH  Google Scholar 

  14. Korovkin, P.P.: Linear Operators and Approximation Theory. Hindustan Publ. Corp., Dehli (1960)

    Google Scholar 

  15. Kounchev, O.I.: Multivariate Polysplines. Applications to Numerical and Wavelet Analysis. Academic, London (2001)

    MATH  Google Scholar 

  16. Kounchev, O., Render, H.: Wavelet analysis of cardinal L-splines and construction of multivariate prewavelets. In: Proceedings Tenth International Conference on Approximation Theory, St. Louis, Missouri, March 26–29, 2001

  17. Kounchev, O., Render, H.: The approximation order of polysplines. Proc. Am. Math. Soc. 132, 455–461 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kounchev, O., Render, H.: Cardinal interpolation with polysplines on annuli. J. Approx. Theory 137, 89–107 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kounchev, O., Render, H.: New methods in geometric modelling and controlling exponential processes. In: Proceedings of the Nato Advanced Research Workshop: Scientific Support for the Decision Making in the Security Sector, Velingrad, Bulgaria, 21–25.10.2006, pp. 144–179 (2007)

  20. Lorentz, G.G.: Bernstein Polynomials, 2nd edn. Chelsea, New York (1986)

    MATH  Google Scholar 

  21. Lyche, T., Schumaker, L.L.: L-spline wavelets. In: Wavelets: Theory, Algorithms, and Applications, Taormina, 1993, pp. 197–212. Academic, San Diego (1994)

    Google Scholar 

  22. Mainar, E., Peña, J.M., Sánchez-Reyes, J.: Shape perserving alternatives to the rational Bézier model. Comput. Aided Geom. Des. 14, 5–11 (1997)

    Article  Google Scholar 

  23. Mazure, M.: Bernstein bases in Müntz spaces. Numer. Algorithms 22, 285–304 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mazure, M.: Chebyshev spaces and Bernstein bases. Constr. Approx. 22, 347–363 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mazure, M., Melkémi, K.: Orthonormality of cardinal Chebyshev B-spline bases in weighted Sobolev spaces. Constr. Approx. 18, 387–415 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Micchelli, Ch.: Cardinal L-splines. In: Karlin, S., et al. (eds.) Studies in Spline Functions and Approximation Theory, pp. 203–250. Academic, New York (1976)

    Google Scholar 

  27. Morigi, S., Neamtu, M.: Some results for a class of generalized polynomials. Adv. Comput. Math. 12, 133–149 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Peña, J.M.: On the optimal stability of bases of univariate functions. Numer. Math. 91, 305–318 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schumaker, L.L.: Spline Functions: Basic Theory. Interscience, New York (1981)

    MATH  Google Scholar 

  30. Schumaker, L.L.: On hyperbolic splines. J. Approx. Theory 38, 144–166 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  31. Unser, M., Blu, T.: Cardinal exponential splines: Part I—theory and filtering algorithms. IEEE Trans. Signal Process. 53, 1425–1438 (2005)

    Article  MathSciNet  Google Scholar 

  32. Wielonsky, F.: A Rolle’s theorem for exponential polynomials in the complex domain. J. Math. Pures Appl. 80, 389–408 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhang, J.: C-curves: an extension of cubic curves. Comput. Aided Geom. Des. 13, 199–217 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Aldaz.

Additional information

Communicated by Tim N.T. Goodman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldaz, J.M., Kounchev, O. & Render, H. Bernstein Operators for Exponential Polynomials. Constr Approx 29, 345–367 (2009). https://doi.org/10.1007/s00365-008-9010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-008-9010-6

Keywords

Mathematics Subject Classification (2000)

Navigation