Skip to main content
Log in

On the L 1-condition number of the univariate Bernstein basis

  • Published:
Constructive Approximation Aims and scope

Abstract

We show that the size of the 1-norm condition number of the univariate Bernstein basis for polynomials of degree n is O (2n / √n). This is consistent with known estimates [3], [5] for p = 2 and p = ∞ and leads to asymptotically correct results for the p-norm condition number of the Bernstein basis for any p with 1 ≤ p ≤ ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. de Boor (1976): On local linear fuctionals which vanish at all B-splines but one. In: Theory of Approximation with Applications (A. G. Law, B. N. Sahney, eds.). New York: Academic Press, pp. 120–145.

    Google Scholar 

  2. C. de Boor (1990): The exact condition of the B-spline basis may be hard to determine. J. Approx. Theory, 60:344–359.

    Article  MATH  MathSciNet  Google Scholar 

  3. Z. Ciesielskii, J. Domsta (1985): The degenerate B-spline basis as basis in the space of algebraic polynomials. Ann. Polon. Math., XXVI:71–79.

    Google Scholar 

  4. R. DeVore, G. G. Lorentz (1993): Constructive Approximation. New York: Springer-Verlag.

    MATH  Google Scholar 

  5. T. Lyche (1978): A note on the condition numbers of the B-spline bases. J. Approx. Theory, 22:202–205.

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Lyche, K. Scherer (1997): On the sup-norm condition number of the multivariate triangular Bernstein basis. In: Multivariate Approximation and Splines (G. Nürnberger, J. W. Schmidt, G. Walz, eds.). ISNM, Vol. 125. Basel: Birkhäuser Verlag, pp. 141–151.

    Google Scholar 

  7. T. Lyche, K. Scherer (2000): On thep-norm condition number of the multivariate triangular Bernstein basis. J. Comput. Appl. Math., 119:259–273.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Mørken (1984): On two topics in spline theory: Discrete splines and the equioscillating spline. Master’s thesis, University of Oslo.

  9. J. R. Rice (1964): The Approximation of Functions, Vol. 1. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  10. K. Scherer (2001): Lower bounds for Bernstein-Bézier condition number. In: Mathematical Methods for Curves and Surfaces: Oslo 2000 (T. Lyche, L. L. Schumaker, eds.). Nashville: Vanderbilt University Press, pp. 433–443.

    Google Scholar 

  11. K. Scherer, A. Yu. Shadrin (1999): New upper bound for the B-spline basis condition number. J. Approx. Theory, 99:217–229.

    Article  MATH  MathSciNet  Google Scholar 

  12. L. L. Schumaker (1981): Spline Functions: Basic Theory. New York: Wiley.

    MATH  Google Scholar 

  13. G. Szegő (1959): Orthogonal Polynomials. New York: American Mathematical Society.

    Google Scholar 

  14. A. F. Timan (1963): Theory of Approximation of Functions of a Real Variable. Oxford, UK: Pergamon Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Lyche.

Additional information

Communicated by Edward B. Saff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyche, T., Scherer, K. On the L 1-condition number of the univariate Bernstein basis. Constr. Approx. 18, 503–528 (2002). https://doi.org/10.1007/s00365-002-0507-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-002-0507-0

AMS classification

Key words and phrases

Navigation