Skip to main content
Log in

A high-dimensional single-index regression for interactions between treatment and covariates

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper explores a methodology for dimension reduction in regression models for a treatment outcome, specifically to capture covariates’ moderating impact on the treatment-outcome association. The motivation behind this stems from the field of precision medicine, where a comprehensive understanding of the interactions between a treatment variable and pretreatment covariates is essential for developing individualized treatment regimes (ITRs). We provide a review of sufficient dimension reduction methods suitable for capturing treatment-covariate interactions and establish connections with linear model-based approaches for the proposed model. Within the framework of single-index regression models, we introduce a sparse estimation method for a dimension reduction vector to tackle the challenges posed by high-dimensional covariate data. Our methods offer insights into dimension reduction techniques specifically for interaction analysis, by providing a semiparametric framework for approximating the minimally sufficient subspace for interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adragni KP, Cook DR (2009) Sufficient dimension reduction and prediction in regression. Philos Trans Royal Soc 367:4385–4405

    MathSciNet  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  MathSciNet  Google Scholar 

  • Almeida J, Greenberg T, Lu H, Chase H, Fournier J, Cooper C, Deckersbach T, Adams P, Carmody T, Fava M, Kurian B, McGrath P, McInnis M, Oquendo M, Parsey R, Weissman M, Trivedi M, Phillips M (2018) Est-retest reliability of cerebral blood flow in healthy individuals using arterial spin labeling: findings from the EMBARC study. Magn Reson Med 45:26–33

    Google Scholar 

  • Bura E, Cook RD (2001) Estimating the structural dimension of regression via parametric inverse regression. J Royal Stat Soc Ser B 63:1–10

    Article  MathSciNet  Google Scholar 

  • Cai T, Tian L, Wong PH, Wei LJ (2011) Analysis of randomized comparative clinical trial data for personalized treatment selections. Biostatistics 12:270–282

    Article  Google Scholar 

  • Caron A, Baio G, Manolopoulou I (2022) Estimating individual treatment effects using non-parametric regression models: a review. J Royal Stat Soc Ser A 185:1115–1149

    Article  MathSciNet  Google Scholar 

  • Carroll R, Fan J, Gijbels I, Wand M (1997) Generalized partially linear single-index models. J Am Stat Assoc 1997:10

    MathSciNet  Google Scholar 

  • Cohen MX (2022) A tutorial on generalized eigendecomposition for denoising, contrast enhancement, and dimension reduction in multichannel electrophysiology. NeuroImage 2022:118809

    Article  Google Scholar 

  • Cook RD (1994) On the interpretation of regression plots. J Am Stat Assoc 89:177–189

    Article  MathSciNet  Google Scholar 

  • Cook RD (1996) Graphics for regressions with a binary response. J Am Stat Assoc 91:983–992

    Article  MathSciNet  Google Scholar 

  • Cook DR (1998) Regression graphics. Wiley, New York

    Book  Google Scholar 

  • Cook RD (2007) Fisher lecture: dimension reduction in regression. Stat Sci 22:1–26

    MathSciNet  Google Scholar 

  • Cook DR, Li B (2002) Dimension reduction for conditional mean in regression. Ann Stat 30:455–474

    Article  MathSciNet  Google Scholar 

  • Dahne S, Meinecke FC, Haufe S, Hohne J, Tangermann M, Muller KR, Nikulin VV (2014) Spoc: a novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters. Neuroimage 86:111–122

    Article  Google Scholar 

  • de Cheveigne A, Parra LC (2014) Joint decorrelation, a versatile tool for multichannel data analysis. Neuroimage 98:487–505

    Article  Google Scholar 

  • Deary IJ, Liewald D, Nissan J (2011) A free, easy-to-use, computer-based simple and four-choice reaction time programme: the deary-liewald reaction time task. Behav Res Methods 43:258–268

    Article  Google Scholar 

  • Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53:1–15

    Article  Google Scholar 

  • Eilers P, Marx B (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11:89–121

    Article  MathSciNet  Google Scholar 

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    Article  MathSciNet  Google Scholar 

  • Fischl B (2012) Freesurfer. Neuroimage 62:774–781

    Article  Google Scholar 

  • Flanker BA, Eriksen CW (1974) Effects of noise letters upon identification of a target letter in a non-search task. Percept Psychophys 16:143–149

    Article  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22

    Article  Google Scholar 

  • Herrera-Guzman I, Guidayol-Ferre E, Herrera-Guzman D, Guardia-Olmos J, Hinojosa-Calvo E, Herrera-Abarca JE (2009) Effects of selective serotonin reuptake and dual serotonergic-noradrenergic reuptake treatments on memory and mental processing speed in patients with major depressive disorder. Psyc Res 43:855–863

    Article  Google Scholar 

  • Hurvich C, Tsai C (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    Article  MathSciNet  Google Scholar 

  • Ichimura H, Lee S (2010) Characterization of the asymptotic distribution of semiparametric m-estimators. J Econ 159:252–266

    Article  MathSciNet  Google Scholar 

  • Imbens GW, Rubin DB (2015) Causal inference in statistics, social, and biomedical sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jeng X, Lu W, Peng H (2018) High-dimensional inference for personalized treatment decision. Electron J Stat 12:2074–2089

    Article  MathSciNet  Google Scholar 

  • Li KC (1991) Sliced inverse regression for dimension reduction (with discussion). J Am Stat Assoc 86:316–342

    Article  Google Scholar 

  • Li KC (1992) On principal Hessian directions for data visualization and dimension reduction: another application of Stein’s lemma. J Am Stat Assoc 87:1025–1039

    Article  MathSciNet  Google Scholar 

  • Liu C, Zhao X, Huang J (2023) A random projection approach to hypothesis tests in high-dimensional single-index models. J Am Stat Assoc. https://doi.org/10.1080/01621459.2022.2156350

    Article  Google Scholar 

  • Loonstra A, Tarlow AR, Sellers AH (2001) Cowat metanorms across age, education, and gender. Appl Neuropsychol 8:161–166

    Article  Google Scholar 

  • Lu W, Zhang H, Zeng D (2011) Variable selection for optimal treatment decision. Stat Methods Med Res 22:493–504

    Article  MathSciNet  Google Scholar 

  • Luo W, Zhu Y, Ghosh D (2017) On estimating regression-based causal effects using sufficient dimension reduction. Biometrika 104:51–65

    MathSciNet  Google Scholar 

  • Luo W, Wu W, Zhu Y (2018) Learning heterogeneity in causal inference using sufficient dimension reduction. J Causal Inference 7:10

    MathSciNet  Google Scholar 

  • Ma Y, Zhu L (2012) A semiparametric approach to dimension reduction. J Am Stat Assoc 107:168–179

    Article  MathSciNet  Google Scholar 

  • Ma Y, Zhu L (2013) Efficient estimation in sufficient dimension reduction. Ann Stat 41:250–268

    Article  MathSciNet  Google Scholar 

  • Meinshausen N, Yu B (2009) Lasso-type recoerty of sparse representation for high-dimensional data. Ann Stat 37:246–270

    Article  Google Scholar 

  • Murphy SA (2003) Optimal dynamic treatment regimes. J Royal Stat Soc Ser B (Stat Methodol) 65:331–355

    Article  MathSciNet  Google Scholar 

  • Murphy SA (2005) A generalization error for q-learning. J Mach Learn 6:1073–1097

    MathSciNet  Google Scholar 

  • Park H, Petkova E, Tarpey T, Ogden RT (2021) A constrained single-index regression for estimating interactions between a treatment and covariates. Biometrics 77:506–518

    Article  MathSciNet  Google Scholar 

  • Peng H, Huang T (2011) Penalized least squares for single index models. J Stat Plan Inference 141:1362–1379

    Article  MathSciNet  Google Scholar 

  • Petkova E, Tarpey T, Su Z, Ogden RT (2016) Generated effect modifiers in randomized clinical trials. Biostatistics 18:105–118

    Article  MathSciNet  Google Scholar 

  • Petkova E, Ogden R, Tarpey T, Ciarleglio A, Jiang B, Su Z, Carmody T, Adams P, Kraemer H, Grannemann B, Oquendo M, Parsey R, Weissman M, McGrath P, Fava M, Trivedi M (2017) Statistical analysis plan for stage 1 EMBARC (establishing moderators and biosignatures of antidepressant response for clinical care) study. Contemp Clin Trials Commun 6:22–30

    Article  Google Scholar 

  • Poon W, Wang H (2013) Bayesian analysis of generalized partially linear single-index models. Comput Stat Data Anal 68:251–261

    Article  MathSciNet  Google Scholar 

  • Qian M, Murphy SA (2011) Performance guarantees for individualized treatment rules. Ann Stat 39:1180–1210

    Article  MathSciNet  Google Scholar 

  • Radchenko P (2015) High dimensional single index models. J Multivar Anal 139:266–282

    Article  MathSciNet  Google Scholar 

  • Ravikumar P, Lafferty J, Liu H, Wasserman L (2009) Sparse additive models. J Royal Stat Soc Ser B 71:1009–1030

    Article  MathSciNet  Google Scholar 

  • Robins J (2004) Optimal structural nested models for optimal sequential decisions. Springer, New York

    Book  Google Scholar 

  • Rubin D (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol 66:688–701

    Article  Google Scholar 

  • Schneider U, Tardivel P (2022) The geometry of uniqueness, sparsity and clustering in penalized estimation. J Mach Learn Res 23:1–36

    MathSciNet  Google Scholar 

  • Shi C, Song R, Lu W (2016) Robust learning for optimal treatment decision with np-dimensionality. Electron J Stat 10:2894–2921

    Article  MathSciNet  Google Scholar 

  • Shi C, Fan A, Song R, Lu W (2018) High-dimensional A-learning for optimal dynamic treatment regimes. Ann Stat 46:925–957

    Article  MathSciNet  Google Scholar 

  • Stoker TM (1986) Consistent estimation of scaled coefficients. Econometrica 54:1461–1481

    Article  MathSciNet  Google Scholar 

  • Sugiura N (1978) Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun Stat Theor Methods 7:13–26

    Article  Google Scholar 

  • Tian L, Alizadeh A, Gentles A, Tibshrani R (2014) A simple method for estimating interactions between a treatment and a large number of covariates. J Am Stat Assoc 109:1517–1532

    Article  MathSciNet  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Royal Stat Soc Ser B (Stat Methodol) 58:267–288

    MathSciNet  Google Scholar 

  • Trivedi M, McGrath P, Fava M, Parsey R, Kurian B, Phillips M, Oquendo M, Bruder G, Pizzagalli D, Toups M, Cooper C, Adams P, Weyandt S, Morris D, Grannemann B, Ogden R, Buckner R, McInnis M, Kraemer H, Petkova E, Carmody T, Weissman M (2016) Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): Rationale and design. J Psyc Res 78:11–23

    Article  Google Scholar 

  • Wang G, Wang L (2015) Spline estimation and variable selection for single-index prediction models with diverging number of index parameters. J Stat Plan Inference 162:1–19

    Article  MathSciNet  Google Scholar 

  • Wang L, Yang L (2009) Spline estimation of single-index models. Stat Sin 19:765–783

    MathSciNet  Google Scholar 

  • Wang Q, Yin X (2008) A nonlinear multi-dimensional variable selection method for high dimensional data: Sparse mave. Comput Stat Data Anal 52:4512–4512

    Article  MathSciNet  Google Scholar 

  • Xia Y, Tong H, Li W (1999) On extended partially linear single-index models. Biometrika 86:831–842

    Article  MathSciNet  Google Scholar 

  • Xia Y, Tong H, Li W, Zhu L (2002) An adaptive estimation of dimension reduction space. J Royal Stat Soc Ser B (Stat Methodol) 64:363–410

    Article  MathSciNet  Google Scholar 

  • Yin X, Li B, Cook DR (2008) Successive direction extraction for estimating the central subspace in a multiple-index regression. J Multivar Anal 99:1733–1757

    Article  MathSciNet  Google Scholar 

  • Zhang B, Tsiatis AA, Laber EB, Davidian M (2012) A robust method for estimating optimal treatment regimes. Biometrics 68:1010–1018

    Article  MathSciNet  Google Scholar 

  • Zhao T, Li X, Liu H, Roeder K (2014) SAM: Sparse additive modelling. R Package Vers 1:5

    Google Scholar 

  • Zhu L, Qian L, Lin J (2011) Variable selection in a class of single-index models. Ann Inst Stat Math 63:1277–1293

    Article  MathSciNet  Google Scholar 

  • Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101:1418–1429

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health (NIH) grant 5 R01 MH099003. The first author thanks Dr. Peter Radchenko of the University of Sydney for his comments and providing the code to implement his regression model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 451 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Tarpey, T., Petkova, E. et al. A high-dimensional single-index regression for interactions between treatment and covariates. Stat Papers (2024). https://doi.org/10.1007/s00362-024-01546-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00362-024-01546-0

Keywords

Navigation