Skip to main content
Log in

New results for adaptive false discovery rate control with p-value weighting

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

The prior information regarding the truth or falsehood of a hypothesis is expressed with random p-value weights. We find that the weighted Benjamini–Hochberg procedure is conservative in controlling the false discovery rate (FDR). Also, the power of the procedure can be improved by plugging in a suitable estimate of the product of the proportion of true null hypotheses and the mean weight of the true null hypotheses to the thresholds. We propose two such estimates and theoretically prove that the resulting adaptive multiple testing procedures control the FDR. However, for two other model-based estimates, the control over false discovery rate of the adaptive procedures is verified through simulation experiments. We also incorporate random p-value weights to an adaptive one-stage step-up procedure, and prove its control over the FDR. The p-value weighted multiple testing procedures lead to the improvement of power of the unweighted procedures when the assignment of weights is positively associated with the falsehood of the hypotheses. Extensive simulation studies are performed to evaluate the performances of the proposed multiple testing procedures. Finally, the proposed procedures are illustrated using a real life data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57(1):289–300

  • Benjamini Y, Hochberg Y (1997) Multiple hypotheses testing with weights. Scand J Stat 24(3):407–418

    Article  MathSciNet  MATH  Google Scholar 

  • Benjamini Y, Hochberg Y (2000) On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat 25(1):60–83

    Article  Google Scholar 

  • Benjamini Y, Krieger AM, Yekutieli D (2006) Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93(3):491–507

    Article  MathSciNet  MATH  Google Scholar 

  • Biswas A (2020) Estimating the proportion of true null hypotheses with application in microarray data. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2020.1800036

    Article  Google Scholar 

  • Biswas A (2022) Model-free bias reduction of Storey’s estimator for the proportion of true null hypotheses. Calcutta Stat Assoc Bull 74(1):27–41

    Article  MathSciNet  Google Scholar 

  • Biswas A, Chattopadhyay G, Chatterjee A (2021) Bias-corrected estimators for proportion of true null hypotheses: application of adaptive FDR-controlling in segmented failure data. J Appl Stat 49(14):1–23

    MathSciNet  MATH  Google Scholar 

  • Biswas A, Chakraborty S, Baruah VJ (2022) Estimation of the proportion of true null hypotheses under sparse dependence: adaptive FDR controlling in microarray data. Stat Methods Med Res 31(5):917–927

    Article  MathSciNet  Google Scholar 

  • Blanchard G, Roquain E (2008) Two simple sufficient conditions for FDR control. Electron J Stat 2:963–992

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchard G, Roquain É (2009) Adaptive false discovery rate control under independence and dependence. J Mach Learn Res 10(12):2837–2871

    MathSciNet  MATH  Google Scholar 

  • Chen X, Doerge RW, Heyse JF (2018) Multiple testing with discrete data: proportion of true null hypotheses and two adaptive FDR procedures. Biom J 60(4):761–779

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng Y, Gao D, Tong T (2015) Bias and variance reduction in estimating the proportion of true-null hypotheses. Biostatistics 16(1):189–204

    Article  MathSciNet  Google Scholar 

  • Durand G (2019) Adaptive \(p\)-value weighting with power optimality. Electron J Stat 13(2):3336–3385

  • Efron B (2012) Large-scale inference: empirical Bayes methods for estimation, testing, and prediction, vol 1. Cambridge University Press, New York

    MATH  Google Scholar 

  • Genovese CR, Roeder K, Wasserman L (2006) False discovery control with \(p\)-value weighting. Biometrika 93(3):509–524

  • Gerasimov M, Kruglov V, Volodin A (2012) On negatively associated random variables. Lobachevskii J Math 33(1):47–55

    Article  MathSciNet  MATH  Google Scholar 

  • Guan Z, Wu B, Zhao H (2008) Nonparametric estimator of false discovery rate based on Bernštein polynomials. Stat Sin 18:905–923

    MATH  Google Scholar 

  • Habiger JD (2017) Adaptive false discovery rate control for heterogeneous data. Stat Sin 27:1731–1756

    MathSciNet  MATH  Google Scholar 

  • Himes BE, Jiang X, Wagner P, Hu R, Wang Q, Klanderman B, Lu Q (2014) RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells. PLoS ONE 9(6):e99625

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    MathSciNet  MATH  Google Scholar 

  • Ignatiadis N, Huber W (2021) Covariate powered cross-weighted multiple testing. J R Stat Soc B 83(4):720–751

    Article  MathSciNet  MATH  Google Scholar 

  • Ignatiadis N, Klaus B, Zaugg JB, Huber W (2016) Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nat Methods 13(7):577–580

    Article  Google Scholar 

  • Jiang H, Doerge RW (2008) Estimating the proportion of true null hypotheses for multiple comparisons. Cancer Inform 6:25–32

    Article  Google Scholar 

  • Joag-Dev K, Proschan F (1983) Negative association of random variables with applications. Ann Stat 11:286–295

    Article  MathSciNet  MATH  Google Scholar 

  • Langaas M, Lindqvist BH, Ferkingstad E (2005) Estimating the proportion of true null hypotheses, with application to DNA microarray data. J R Stat Soc B 67(4):555–572

    Article  MathSciNet  MATH  Google Scholar 

  • Li A, Barber RF (2019) Multiple testing with the structure-adaptive Benjamini–Hochberg algorithm. J R Stat Soc B 81(1):45–74

    Article  MathSciNet  MATH  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol 15(12):1–21

    Article  Google Scholar 

  • Markitsis A, Lai Y (2010) A censored beta mixture model for the estimation of the proportion of non-differentially expressed genes. Bioinformatics 26(5):640–646

    Article  Google Scholar 

  • Nettleton D, Hwang JG, Caldo RA, Wise RP (2006) Estimating the number of true null hypotheses from a histogram of \(p\) values. J Agric Biol Environ Stat 11(3):337–356

  • Ostrovnaya I, Nicolae DL (2012) Estimating the proportion of true null hypotheses under dependence. Stat Sin 22:1689–1716

    MathSciNet  MATH  Google Scholar 

  • Pounds S, Cheng C (2006) Robust estimation of the false discovery rate. Bioinformatics 22(16):1979–1987

    Article  Google Scholar 

  • Pounds S, Morris SW (2003) Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of \(p\)-values. Bioinformatics 19(10):1236–1242

  • Ramdas AK, Barber RF, Wainwright MJ, Jordan MI (2019) A unified treatment of multiple testing with prior knowledge using the \(p\)-filter. Ann Stat 47(5):2790–2821

  • Roeder K, Wasserman L (2009) Genome-wide significance levels and weighted hypothesis testing. Stat Sci Rev J Inst Math Stat 24(4):398

    MathSciNet  MATH  Google Scholar 

  • Roeder K, Bacanu SA, Wasserman L, Devlin B (2006) Using linkage genome scans to improve power of association in genome scans. Am J Hum Genet 78(2):243–252

    Article  Google Scholar 

  • Roquain E, Van De Wiel MA (2009) Optimal weighting for false discovery rate control. Electron J Stat 3:678–711

    Article  MathSciNet  MATH  Google Scholar 

  • Sarkar SK (2008) On methods controlling the false discovery rate. Sankhyā Indian J Stat A 70:135–168

    MathSciNet  MATH  Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc B 64(3):479–498

    Article  MathSciNet  MATH  Google Scholar 

  • Storey JD, Tibshirani R (2003) SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays. In: The analysis of gene expression data. Springer, New York, pp 272–290

  • Storey JD, Taylor JE, Siegmund D (2004) Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J R Stat Soc B 66(1):187–205

    Article  MathSciNet  MATH  Google Scholar 

  • Tong T, Feng Z, Hilton JS, Zhao H (2013) Estimating the proportion of true null hypotheses using the pattern of observed p-values. J Appl Stat 40(9):1949–1964

    Article  MathSciNet  MATH  Google Scholar 

  • Wang HQ, Tuominen LK, Tsai CJ (2011) SLIM: a sliding linear model for estimating the proportion of true null hypotheses in datasets with dependence structures. Bioinformatics 27(2):225–231

    Article  Google Scholar 

  • Yu C, Zelterman D (2017) A parametric model to estimate the proportion from true null using a distribution for p-values. Comput Stat Data Anal 114:105–118

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and two anonymous reviewers for their insightful suggestions and comments on an earlier version of the manuscript. The authors also thank Professor Tathagata Bandyopadhyay of DA-IICT, Gandhinagar, India for careful reading of the manuscript and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniket Biswas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, A., Chattopadhyay, G. New results for adaptive false discovery rate control with p-value weighting. Stat Papers 64, 1969–1996 (2023). https://doi.org/10.1007/s00362-022-01369-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-022-01369-x

Keywords

Mathematics Subject Classification

Navigation