Skip to main content
Log in

Strong uniform consistency of the local linear relative error regression estimator under left truncation

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper is concerned with a nonparametric estimator of the regression function based on the local linear method when the loss function is the mean squared relative error and the data left truncated. The proposed method avoids the problem of boundary effects and is robust against the presence of outliers. Under suitable assumptions, we establish the uniform almost sure strong consistency with a rate over a compact set. A simulation study is conducted to comfort our theoretical result. This is made according to different cases, sample sizes, rates of truncation, in presence of outliers and a comparison study is made with respect to classical, local linear and relative error estimators. Finally, an experimental prediction is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altendji B, Demongeot J, Laksaci A, Rachdi M (2018) Functional data analysis: estimation of the relative error in functional regression under left truncated model. J Nonparametr Stat 30:472–490

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J (1992) Design adaptative nonparametric regression. J Am Stat Assoc 87:998–1004

    Article  MATH  Google Scholar 

  • Fan J, Gijbels I (1994) Censored regression: local linear approximations and their applications. J Am Stat Associat 89:560–570

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications, vol 66. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Giné E, Guillou A (1999) Laws of the iterated logarithm for censored data. Ann Probab 27:2042–2067

    Article  MathSciNet  MATH  Google Scholar 

  • Giné E, Guillou A (2001) On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals. Ann L’institut Henri Poincaré Probabilités et Statistiques 37(4):503–522

    Article  MathSciNet  MATH  Google Scholar 

  • He S, Yang GL (1998) Estimation of the truncation probability in the random truncation model. Ann Stat 26:1011–1027

    Article  MathSciNet  MATH  Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley series in probability and statistics. Wiley, New York

    Book  MATH  Google Scholar 

  • Jones MC, Park H, Shin KI, Vines SK, Jeong SO (2008) Relative error prediction via kernel regression smoothers. J Stat Plann Infer 138:2887–2898

    Article  MathSciNet  MATH  Google Scholar 

  • Khardani S (2019) Relative error prediction for twice censored data. Math Methods Stat 28:291–306

    Article  MathSciNet  MATH  Google Scholar 

  • Khardani S, Slaoui Y (2019) Nonparametric relative regression under random censorship model. Stat Probab Lett 151:116–122

    Article  MathSciNet  MATH  Google Scholar 

  • Klein JP, Moeschberger ML (2004) Survival analysis: techniques for censored and truncated data. Springer-Verlag, New York

    MATH  Google Scholar 

  • Liang HY, de Una Alvarez J, del Carmen Iglesias Perez M (2011) Local polynomial estimation of a conditional mean function with dependent truncated data. TEST 20:653–677

    Article  MathSciNet  MATH  Google Scholar 

  • Lynden-Bell D (1971) A method of allowing for known observational selection in small samples applied ro 3cr quasars. Mon Not R Astron Soc 155:95–118

    Article  Google Scholar 

  • Makridakis S (1984) The forecasting accuracy of major time series methods. Wiley, New York

    Google Scholar 

  • Narula SC, Wellington JF (1977) Prediction, linear regression and the minimum sum of relative errors. Technometrics 19:185–190

    Article  MATH  Google Scholar 

  • Ould Saïd E, Lemdani M (2006) Asymptotic properties of a nonparametric regression function with randomly truncated data. Ann Inst Stat Math 58:357–378

    Article  MathSciNet  MATH  Google Scholar 

  • Park H, Stefanski LA (1998) Relative error prediction. Stat Probab Lett 40:227–236

    Article  MathSciNet  MATH  Google Scholar 

  • Rabhi Y, Asgharian M (2020) A semiparametric regression model under biased sampling and random censoring: a local pseudo-likelihood approach. Can J Stat 00:000–000

    MATH  Google Scholar 

  • Spierdijk L (2008) Nonparametric conditional hazard rate estimation. a local linear approach. Comput Stat Data Anal 52(5):2419–2434

    Article  MathSciNet  MATH  Google Scholar 

  • Stute W (1993) Censorship when covariables are present. J Multivar Anal 45:89–103

    Article  MATH  Google Scholar 

  • Wang JF, Ma WM, Fan GL, Wen LM (2015) Local linear quantile regression with truncated and dependent data. Stat Probab Lett 96:232–240

    Article  MathSciNet  MATH  Google Scholar 

  • Woodroofe M (1985) Estimating a distribution function with truncated data. Ann Stat 13:163–177

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous referees whose careful reading gave them the opportunity to improve the quality of the paper by addressing the theoretical issue of dependency and enriching the simulation part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Lemdani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouhadjera, F., Lemdani, M. & Ould Saïd, E. Strong uniform consistency of the local linear relative error regression estimator under left truncation. Stat Papers 64, 421–447 (2023). https://doi.org/10.1007/s00362-022-01325-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-022-01325-9

Keywords

Navigation