Skip to main content
Log in

A measure of evidence based on the likelihood-ratio statistics

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, we show that the likelihood-ratio measure (a) is invariant with respect to dominating sigma-finite measures, (b) satisfies logical consequences which are not satisfied by standard p values, (c) respects frequentist properties, i.e., the type I error can be properly controlled, and, under mild regularity conditions, (d) can be used as an upper bound for posterior probabilities. We also discuss a generic application to test whether the genotype frequencies of a given population are under the Hardy–Weinberg equilibrium, under inbreeding restrictions or under outbreeding restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bickel DR (2012) The strength of statistical evidence for composite hypotheses: inference to the best explanation. Stat Sin 22:1147–1198

    MathSciNet  MATH  Google Scholar 

  • Birkes D (1990) Generalized likelihood ratio tests and uniformly most powerful tests. Am Stat 44:163–166

    MathSciNet  Google Scholar 

  • Blume JD (2008) Tutorial in biostatistics: likelihood methods for measuring statistical evidence. Stat Med 21:2563–2599

    Article  Google Scholar 

  • Chernoff H (1954) On the distribution of the likelihood ratio. Ann Math Stat 25:573–578

    Article  MathSciNet  MATH  Google Scholar 

  • Denneberg D (1994) Non-additive measure and integral, theory and decision library (Series B mathematical and statistical methods), vol 27. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Drton M (2009) Likelihood ratio tests and singularities. Ann Stat 37:979–1012

    Article  MathSciNet  MATH  Google Scholar 

  • Emigh TH (1980) A comparison of tests for Hardy-Weinberg equilibrium. Biometrics 36:627–642

    Article  MathSciNet  MATH  Google Scholar 

  • Giang PH, Shenoy PP (2005) Decision making on the sole basis of statistical likelihood. Artif Intell 165:137–163

    Article  MathSciNet  MATH  Google Scholar 

  • Gonçalves FB, Franklin P (2021) On the definition of likelihood function, arXiv:1906.10733

  • Graffelman J, Weir B (2016) Testing for Hardy-Weinberg equilibrium at biallelic genetic markers on the X chromosome. Heredity 116:558–568

    Article  Google Scholar 

  • Hacking I (1965) Logic of statistical inference. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Hartigan JA (1998) The maximum likelihood prior. Ann Stat 26:2083–2103

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin S, Rubin H (1956) The theory of decision procedures for distributions with monotone likelihood ratio. Ann Math Stat 27:272–299

    Article  MathSciNet  MATH  Google Scholar 

  • Lindley DV (1988) Statistical inference concerning Hardy-Weinberg equilibrium. In: Bernardo JM, DeGroot MH, Lindley DV, Smith AFM (eds) Bayesian statistics, vol 3. Oxford University Press, Oxford, pp 307–326

    Google Scholar 

  • Mudholkar GS, Chaubey YP (2009) On defining p values. Stat Probab Lett 79:1963–1971

    Article  MathSciNet  MATH  Google Scholar 

  • Neyman J, Pearson ES (1933) On the problem of the most efficient tests of statistical hypotheses. Philos Trans R Soc Lond A 231:289–337

    Article  MATH  Google Scholar 

  • Patriota AG (2013) A classical measure of evidence for general null hypotheses. Fuzzy Sets Syst 233:74–88

    Article  MathSciNet  MATH  Google Scholar 

  • Patriota AG (2017) On some assumptions of the null hypothesis statistical testing. Educ Psychol Meas 77:507–528

    Article  Google Scholar 

  • Patriota AG, Alves JO (2021) A monotone frequentist measure of evidence for testing variance components in linear mixed models. J Stat Plan Inference 219:43–62. https://doi.org/10.1016/j.jspi.2021.11.002

    Article  MathSciNet  MATH  Google Scholar 

  • Puhalskii A (2001) Large deviations and idempotent probability, Monographs and surveys in pure and applied mathematics. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Puig X, Ginebra J, Graffelman J (2017) A Bayesian test for Hardy-Weinberg equilibrium of biallelic X-chromosomal markers. Heredity 119:226–236

    Article  Google Scholar 

  • Royall R (1997) Statistical evidence: a likelihood paradigm. CRC Press, New York

    MATH  Google Scholar 

  • Royall R (2000) On the probability of observing misleading statistical. J Am Stat Assoc 95:760–768

    Article  MathSciNet  MATH  Google Scholar 

  • Severini TA (2000) Likelihood methods in statistics, vol 22. Oxford Statistical Science Series, New York

    MATH  Google Scholar 

  • Schervish MJ (1996) P values: what they are and what they are not. Am Stat 50:203–206

    MathSciNet  Google Scholar 

  • Shoemaker J, Painter I, Weir BS (1998) A bayesian characterization of Hardy-Weinberg disequilibrium. Genetics 149:2079–2088

    Article  Google Scholar 

  • Sprott DA (2000) Statistical inference in science. Springer, New York

    MATH  Google Scholar 

  • Vu HTV, Zhou S (1997) Generalization of likelihood ratio tests under nonstandard conditions. Ann Stat 25:897–916

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1:3–28

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work received Grants from FAPESP–Brazil (2014/25595-0) and CNPq (200115/2015-4). This paper was partially developed in the Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Canada, and in the Department of Statistics, University of São Paulo, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Galvão Patriota.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patriota, A.G. A measure of evidence based on the likelihood-ratio statistics. Stat Papers 63, 1931–1951 (2022). https://doi.org/10.1007/s00362-022-01301-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-022-01301-3

Keywords

Navigation