Skip to main content

Inversion-free subsampling Newton’s method for large sample logistic regression


In this paper, we develop a subsampling Newton’s method to efficiently approximate the maximum likelihood estimate in logistic regression, which is especially useful for large-sample problems. One distinct feature of our algorithm is that matrix inversion is not explicitly performed. We propose two algorithms which are used to construct iteratively a sequence of matrices which converge to the Hessian of the maximum likelihood function on the subsample. We provide numerical examples to show that the proposed method is efficient and robust.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Using the code provided by authors at


  1. Bach F (2013) Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. arXiv preprint arXiv:1303.6149

  2. Bercu B, Godichon A, Portier B (2020) An efficient stochastic newton algorithm for parameter estimation in logistic regressions. SIAM J Control Optim 58(1):348–367

    MathSciNet  Article  Google Scholar 

  3. Bishop C (2006) Pattern recognition and machine learning. Springer, Berlin

    MATH  Google Scholar 

  4. Clémençon S, Bertail P, Chautru E, Papa G (2019) Optimal survey schemes for stochastic gradient descent with applications to m-estimation. ESAIM: Probab Stat 23:310–337

    MathSciNet  Article  Google Scholar 

  5. Czado C (1994) Parametric link modification of both tails in binary regression. Stat Papers 35(1):189–201

    Article  Google Scholar 

  6. Drineas P, Magdon-Ismail M, Mahoney MW, Woodruff DP (2012) Fast approximation of matrix coherence and statistical leverage. J Mach Learn Res 13(Dec):3475–3506

    MathSciNet  MATH  Google Scholar 

  7. Drineas P, Mahoney MW, Muthukrishnan S (2006) Sampling algorithms for l 2 regression and applications. In: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm. Society for Industrial and Applied Mathematics, pp 1127–1136

  8. Drineas P, Mahoney MW, Muthukrishnan S, Sarlós T (2011) Faster least squares approximation. Numerische Mathematik 117(2):219–249

    MathSciNet  Article  Google Scholar 

  9. Dua D, Graff C (2017) UCI machine learning repository.

  10. Duflo M (2013) Random iterative models, vol 34. Springer, Berlin

    Google Scholar 

  11. Fan J, Han F, Liu H (2014) Challenges of big data analysis. Nat Sci Rev 1(2):293–314

    Article  Google Scholar 

  12. Godichon-Baggioni A (2016) Lp and almost sure rates of convergence of averaged stochastic gradient algorithms: locally strongly convex objective. arXiv preprint arXiv:1609.05479

  13. Haggstrom GW (1983) Logistic regression and discriminant analysis by ordinary least squares. J Bus Econ Stat 1(3):229–238

    Google Scholar 

  14. Komori O, Eguchi S, Ikeda S, Okamura H, Ichinokawa M, Nakayama S (2016) An asymmetric logistic regression model for ecological data. Methods Ecol Evol 7(2):249–260

    Article  Google Scholar 

  15. Küchenhoff H (1995) The identification of logistic regression models with errors in the variables. Stat Papers 36(1):41–47

    MathSciNet  Article  Google Scholar 

  16. Ma P, Mahoney MW, Yu B (2015) A statistical perspective on algorithmic leveraging. J Mach Learn Res 16(1):861–911

    MathSciNet  MATH  Google Scholar 

  17. Ma P, Sun X (2015) Leveraging for big data regression. Wiley Interdiscip Rev 7(1):70–76

    MathSciNet  Article  Google Scholar 

  18. Marx V (2013) Biology: the big challenges of big data. Nature 498(7453):255–260

    Article  Google Scholar 

  19. Merlo J, Wagner P, Ghith N, Leckie G (2016) An original stepwise multilevel logistic regression analysis of discriminatory accuracy: the case of neighbourhoods and health. PLoS ONE 11(4):e0153778

    Article  Google Scholar 

  20. Miller KS (1981) On the inverse of the sum of matrices. Math Mag 54(2):67–72

    MathSciNet  Article  Google Scholar 

  21. Özkale MR (2016) Iterative algorithms of biased estimation methods in binary logistic regression. Stat Papers 57(4):991–1016

    MathSciNet  Article  Google Scholar 

  22. Polyak BT, Juditsky AB (1992) Acceleration of stochastic approximation by averaging. SIAM J Control Optim 30(4):838–855

    MathSciNet  Article  Google Scholar 

  23. Ruppert D (1988) Efficient estimations from a slowly convergent robbins-monro process. Technical report, Cornell University Operations Research and Industrial Engineering

  24. Sherman J (1949) Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix. Ann Math Stat 20(4):621

    Google Scholar 

  25. Sherman J, Morrison WJ (1950) Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann Math Stat 21(1):124–127

    MathSciNet  Article  Google Scholar 

  26. Wang H (2019) More efficient estimation for logistic regression with optimal subsamples. J Mach Learn Res 20(132):1–59

    MathSciNet  MATH  Google Scholar 

  27. Wang H, Ma Y (2020) Optimal subsampling for quantile regression in big data. Biometrika 108:99–112

    MathSciNet  Article  Google Scholar 

  28. Wang H, Yang M, Stufken J (2019) Information-based optimal subdata selection for big data linear regression. J Am Stat Assoc 114(525):393–405

    MathSciNet  Article  Google Scholar 

  29. Wang H, Zhu R, Ma P (2018) Optimal subsampling for large sample logistic regression. J Am Stat Assoc 113(522):829–844

    MathSciNet  Article  Google Scholar 

  30. Yao Y, Wang H (2019) Optimal subsampling for softmax regression. Stat Papers 60(2):235–249

    MathSciNet  Article  Google Scholar 

Download references


We are grateful to the editors and reviewer for the evaluation and for the detailed comments and suggestions on earlier versions of the manuscript, which have much improved the paper. Nhu N. Nguyen was in part supported by the National Science Foundation under Grant DMS-1710827.

Author information



Corresponding author

Correspondence to Nhu N. Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kirkby, J.L., Nguyen, D.H., Nguyen, D. et al. Inversion-free subsampling Newton’s method for large sample logistic regression. Stat Papers (2021).

Download citation


  • Logistic regression
  • Massive data
  • Optimal subsampling
  • Newton’s method
  • Gradient descent
  • Stochastic gradient descent

Mathematics Subject Classification

  • 34D20
  • 60H10
  • 92D25
  • 93D05
  • 93D20