Skip to main content
Log in

Asymptotics for the conditional self-weighted M-estimator of GRCA(1) models with possibly heavy-tailed errors

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Consider a generalized random coefficient AR(1) model, \(y_t=\Phi _t y_{t-1}+u_t\), where \(\{(\Phi _t, u_t)^\prime , t\ge 1\}\) is a sequences of i.i.d. random vectors, and a conditional self-weighted M-estimator of \(\textsf {E}\Phi _t\) is proposed. The asymptotically normality of this new estimator is established with \(\textsf {E}u_t^2\) being possibly infinite. Simulation experiments are carried out to assess the performance of the theory and method in finite samples and a real data example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Araveeporn A (2017) Comparing random coefficient autoregressive model with and without autocorrelated errors by Bayesian analysis. Stat J IAOS 33:537–545

    Article  Google Scholar 

  • Davis RA, Knight K, Liu J (1992) M-estimaton for autoregressions with infinite variance. Stoch Proc Appl. 40:145–180

    Article  Google Scholar 

  • Dielman TE (1992) Misspecification in random coefficient regression models: a Monte Carlo simulation. Stat Pap 33(1):241–260

    Article  Google Scholar 

  • Hwang SY, Basawa IV (1997) The local asymptotic normality of a class of generalized random coefficient autoregressvie processes. Stat Probab Lett 34:165–170

    Article  Google Scholar 

  • Hwang SY, Basawa IV (1998) Parameter estimation for generalization random coefficient autoregressive processes. J Stat Plan Inference 68:323–337

    Article  Google Scholar 

  • Jürgens U (1985) The estimation of a random coefficient AR(1) process under moment conditions. Statis Hefte 26(1):237–249

    Article  MathSciNet  Google Scholar 

  • Ling S (2005) Self-weighted least absolute deviation estimation for infinite variance autoregressive models. J R Stat Soc B 67(3):381–393

    Article  MathSciNet  Google Scholar 

  • Mikosch T, Gadrich T, Kluppelberg C, Adler RJ (1995) Parameter estimation for ARMA models with infinite variance innovations. Ann Stat 23:305–326

    Article  MathSciNet  Google Scholar 

  • Nicholls DF, Quinn BG (1982) Random coefficient autoregressive models: an introduction, vol 11. Lectures notes in statistics. Springer, New York

    Book  Google Scholar 

  • Pan J, Wang H, Yao Q (2007) Weighted least absolute deviations estimation for ARMA models with infinite variance. Econ Theory 23:852–879

    Article  MathSciNet  Google Scholar 

  • Tong H (1990) Nonlinear time series. Oxford University Press, Oxford

    Google Scholar 

  • Wang X, Hu S (2017) Asymptotics of self-weighted M-estimators for autoregressive models. Metrika 80:83–92

    Article  MathSciNet  Google Scholar 

  • Yu C, Deng M, Yau SST (2011) DNA sequence comparison by a novel probabilistic method. Inf Sci 181(8):1484–1492

    Article  MathSciNet  Google Scholar 

  • Zhao Z, Wang D (2012) Statistical inference for generalized random coefficient autoregressive model. Math Comput Model 56:152–166

    Article  MathSciNet  Google Scholar 

  • Zhao Z, Liu Y, Peng C (2018) Variable selection in generalized random coefficient autoregressive models. J Inequal Appl 2018(1):82

    Article  MathSciNet  Google Scholar 

  • Zhao Z, Wang D, Peng C (2013) Coefficient constancy test in generalized random coefficient autoregressive model. Appl Math Comput 219:10283–10292

    MathSciNet  MATH  Google Scholar 

  • Zhang L, Yu C, Sun JQ (2015) Generalized Weierstrass–Mandelbrot function model for actual stocks markets indexes with nonlinear characteristics. Fractals 23(02):1550006

    Article  MathSciNet  Google Scholar 

  • Zhang Y, Yang XY (2010) Limit theory for random coefficient first-order autoregressive pocess. Commun Stat-Theory M 39:1922–1931

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for pointing out some errors in a previous version, as well as for several comments that have led to improvements in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renshui Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project supported by Zhejiang Provincial Natural Science Foundation of China (No. LY17A010004) and First Class Discipline of Zhejiang-A (Zhejiang Gongshang University-Statistics)

Appendix

Appendix

In this Appendix, the proof of Theorem 2.1 is exhibited. We first give two lemmas, which will be used frequently in the proof. The first lemma is directly taken from Davis et al. (1992).

Lemma A.1

Let \(\{V_n(\cdot )\}\) and \(V(\cdot )\) be stochastic process on\(R^p\) and suppose that \(V_n(\cdot ){\mathop {\rightarrow }\limits ^{d}}V(\cdot )\) on \(C(R^p)\). Let \(\xi _n\) minimize \(V_n(\cdot )\) and \(\xi \) minimize \(V(\cdot )\). If \(V_n(\cdot )\) is convex for each n and \(\xi \) is unique with probability one, then \(\xi _n{\mathop {\longrightarrow }\limits ^{d}}\xi \) on \(R^p\).

Lemma A.2

Under the conditions of Theorem 2.1, we have, as \(n\rightarrow \infty ,\)

  1. (i)

    \(\frac{1}{n}\sum _{t=1}^n(w_t y_{t-1}^2){\mathop {\rightarrow }\limits ^{p}} \kappa ,\frac{1}{n}\sum _{t=1}^n(w_t^2 y_{t-1}^2){\mathop {\rightarrow }\limits ^{p}} \upsilon \);

  2. (ii)

    \(\max _{1\le t\le n}\frac{|w_t y_{t-1}|}{\sqrt{n}}{\mathop {\rightarrow }\limits ^{p}} 0\);

  3. (iii)

    \(\frac{1}{\sqrt{n}}\sum _{t=1}^n(w_t y_{t-1} \psi (u_t)){\mathop {\rightarrow }\limits ^{d}} N(0,\tau \upsilon )\).

Proof

By applying Assumption 2.4 with \(y_t\) being stationary and ergodic, one can get (i) and (ii) hold true. Hence, we omit the proofs of (i) and (ii), and only give the proof of (iii).

Set \(\zeta _{nt}=\frac{1}{\sqrt{n}}w_ty_{t-1}\psi (u_t)\). Note that \(\{\zeta _{nt},1\le t\le n\}\) is a martingale difference sequence with respect to \({\mathcal {F}}_{t-1}\), and thus from (i), it follows

$$\begin{aligned} \sum _{t=1}^{n}\textsf {E}(\zeta ^2_{nt}|{\mathcal {F}}_{t-1})&=\frac{1}{n} \sum _{t=1}^n(w_t^2 y_{t-1}^2)\textsf {E}\psi ^2(u_t)\nonumber \\&=\tau \frac{1}{n} \sum _{t=1}^n(w_t^2 y_{t-1}^2){\mathop {\rightarrow }\limits ^{p}} \tau \upsilon ~.~ \end{aligned}$$
(A.1)

Letting \(\xi _t=w_ty_{t-1}\), then for any \(\eta >0\), we have

$$\begin{aligned}&\sum _{t=1}^n\textsf {E}(\zeta _{nt}^2 I(|\zeta _{nt}|>\eta )|{\mathcal {F}}_{t-1})\nonumber \\&\quad =\frac{1}{n} \sum _{t=1}^n\xi _t^2\textsf {E}(\psi ^2(u_t)I(|\xi _t\psi (u_t)|>\eta \sqrt{n}|{\mathcal {F}}_{t-1}))\nonumber \\&\quad \le \max _{1\le t \le n}\textsf {E}(\psi ^2(u_t)I(|\xi _t\psi (u_t)|>\eta \sqrt{n})|{\mathcal {F}}_{t-1})\frac{1}{n} \sum _{t=1}^n\xi _t^2. \end{aligned}$$
(A.2)

Notice that

$$\begin{aligned} I(|\xi _t\psi (u_t)|>\eta \sqrt{n})\le I(|\psi (u_t)|>\eta M)+I\left( \frac{|\xi _t|}{\sqrt{n}}>\frac{1}{M}\right) , \end{aligned}$$

and it implies that, for any \(M>0\) and \(1\le t \le n\),

$$\begin{aligned}&\textsf {E}\left( \psi ^2(u_t)I\left( \left| \frac{\xi _t\psi (u_t)}{\sqrt{n}}\right|>\eta \right) \bigg |{\mathcal {F}}_{t-1}\right) \nonumber \\&\quad \le \textsf {E}(\psi ^2(u_t)I(|\psi (u_t)|>\eta M))+\textsf {E}\left. \left( \psi ^2(u_t)I\left( \frac{|\xi _t|}{\sqrt{n}}>\frac{1}{M}\right) \right| {\mathcal {F}}_{t-1}\right) \nonumber \\&\quad \le \textsf {E}(\psi ^2(u_t)I(|\psi (u_t)|>\eta M))+\tau \max _{1\le t \le n}I\left( \frac{|\xi _t|}{\sqrt{n}}>\frac{1}{M}\right) \nonumber \\&\quad =\textsf {E}\left( \psi ^2(u_t)I\left( |\psi (u_t)|>\eta M\right) \right) +\tau I\left( \max _{1\le t \le n}\frac{|\xi _t|}{\sqrt{n}}>\frac{1}{M}\right) , \end{aligned}$$
(A.3)

which leads to

$$\begin{aligned}&\max _{1\le t \le n}\textsf {E}\left. \left( \psi ^2(u_t)I\left( \left| \frac{\xi _t\psi (u_t)}{\sqrt{n}}\right|>\eta \right) \right| {\mathcal {F}}_{t-1}\right) \\&\quad \le \textsf {E}(\psi ^2(u_t)I(|\psi (u_t)|>\eta M))+\tau I\left( \max _{1\le t \le n}\frac{|\xi _t|}{\sqrt{n}}>\frac{1}{M}\right) . \end{aligned}$$

Hence, we have

$$\begin{aligned}&\textsf {E}\left\{ \max _{1\le t \le n}\textsf {E}(\psi ^2(u_t)I\left. \left( \left| \frac{\xi _t\psi (u_t)}{\sqrt{n}}\right|>\eta \right) \right| {\mathcal {F}}_{t-1})\right\} \\&\quad \le \textsf {E}(\psi ^2(u_t)I(|\psi (u_t)|>\eta M))+\tau \textsf {P}\left( \max _{1\le t \le n}\frac{|\xi _t|}{\sqrt{n}}>\frac{1}{M}\right) .~ \end{aligned}$$

By virtue of \(\textsf {E}\psi ^2(u_1)<\infty \), for any \(\varepsilon >0\), there exists some \(M=M(\varepsilon )>0\) large enough such that

$$\begin{aligned} \textsf {E}(\psi ^2(u_t)I(|\psi (u_t)|>\eta M))<\varepsilon , \end{aligned}$$

which implies

$$\begin{aligned}&\textsf {E}\left\{ \max _{1\le t \le n}\textsf {E}\left. \left( \psi ^2(u_t)I\left( \left| \frac{\xi _t\psi (u_t)}{\sqrt{n}}\right|>\eta \right) \right| {\mathcal {F}}_{t-1}\right) \right\} \nonumber \\&\quad \le \tau \textsf {P}\left( \max _{1\le t \le n}\frac{|\xi _t|}{\sqrt{n}}>\frac{1}{M(\varepsilon )}\right) +\varepsilon .~ \end{aligned}$$
(A.4)

Thus, it follows from (A.4) and (i),

$$\begin{aligned} \limsup _{n\rightarrow \infty }\textsf {E}\left( \max _{1\le t \le n}\textsf {E}\left. \left( \psi ^2(u_t)I\left( \left| \frac{\xi _t\psi (u_t)}{\sqrt{n}}\right| >\eta \right) \right| {\mathcal {F}}_{t-1}\right) \right) \le \varepsilon , \end{aligned}$$

and an application of the arbitrariness of \(\varepsilon \) leads to

$$\begin{aligned} \limsup _{n\rightarrow \infty } \textsf {E}\left( \max _{1\le t \le n}\textsf {E}\left. \left( \psi ^2(u_t)I\left( \left| \frac{\xi _t\psi (u_t)}{\sqrt{n}}\right| >\eta \right) \right| {\mathcal {F}}_{t-1}\right) \right) =0. \end{aligned}$$

Hence, we have

$$\begin{aligned} \max _{1\le t \le n}\textsf {E}\left. \left( \psi ^2(u_t)I\left( \left| \frac{\xi _t\psi (u_t)}{\sqrt{n}}\right| >\eta \right) \right| {\mathcal {F}}_{t-1}\right) =o_p(1),~ \end{aligned}$$
(A.5)

which, coupled with (A.2) and (i), yields

$$\begin{aligned} \sum _{t=1}^n\textsf {E}(\zeta _{nt}^2 I(|\zeta _{nt}|>\eta )|{\mathcal {F}}_{t-1})=o_p(1).~ \end{aligned}$$
(A.6)

Then by applying the martingale central limit theorem, together with (A.1) and (A.6), we have

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{t=1}^n(w_t y_{t-1} \psi (u_t)){\mathop {\rightarrow }\limits ^{d}} N(0,\tau \upsilon ), \end{aligned}$$

and thus the proof of Lemma A.2 is finished.   \(\square \)

Now we begin to prove Theorem 2.1.

Proof of Theorem 2.1

Denote \({{\hat{\beta }}}_n=\sqrt{n}({{\hat{\phi }}}_{SM}-\phi _0)\) and

$$\begin{aligned} L_n(\mu )=\sum _{t=1}^n w_t\left( \rho \left( u_t-\frac{\mu y_{t-1}}{\sqrt{n}}\right) -\rho (u_t)\right) , \end{aligned}$$
(A.7)

where \(\mu \in {\mathbb {R}}\). It is clear that \({{\hat{\beta }}}_n\) is the minimizer of \(L_n(\mu )\).

Setting \(A_n=\frac{1}{\sqrt{n}}\sum _{t=1}^n w_t y_{t-1} \psi (u_t)\) and \(B_t(\mu )=w_t \int _0^{-\frac{\mu y_{t-1}}{\sqrt{n}}}(\psi (u_t+s)-\psi (u_t))\mathrm{d}s,\) then (A.7) can be rewritten to be

$$\begin{aligned} L_n(\mu )=&-\mu A_n+\sum _{t=1}^nB_t(\mu )\nonumber \\ =&-\mu A_n+\sum _{t=1}^n\textsf {E}(B_t(\mu )|{\mathcal {F}}_{t-1})+\sum _{t=1}^n(B_t(\mu )-\textsf {E}(B_t(\mu )|{\mathcal {F}}_{t-1})). \end{aligned}$$
(A.8)

From Assumption 2.2, we have

$$\begin{aligned} \sum _{t=1}^n\textsf {E}(B_t(\mu )|{\mathcal {F}}_{t-1})&=\sum _{t=1}^n w_t \int _0^{-\frac{\mu y_{t-1}}{\sqrt{n}}}\textsf {E}(\psi (u_t+s))\mathrm{d}s\\&=\sum _{t=1}^n w_t \int _0^{-\frac{\mu y_{t-1}}{\sqrt{n}}}\lambda s(1+o(1))\mathrm{d}s\\&=\frac{\lambda \mu ^2}{2}\Big (\frac{1}{n} \sum _{t=1}^{n}w_ty_{t-1}^2\Big )(1+o(1)). \end{aligned}$$

Noting that \(\{B_t(\mu )-\textsf {E}(B_t(\mu )|{\mathcal {F}}_{t-1}),1\le t \le n\}\) is a martingale difference sequence, then we have

$$\begin{aligned} \sum _{t=1}^n\textsf {E}(B_t^2(\mu )|{\mathcal {F}}_{t-1})&=\sum _{t=1}^n\textsf {E}\left( w_t^2\left( \int _0^{-\frac{\mu y_{t-1}}{\sqrt{n}}}\psi (u_t+s)-\psi (u_t)\mathrm{d}s\right) ^2\bigg |{\mathcal {F}}_{t-1}\right) \nonumber \\&\le \sum _{t=1}^n\textsf {E}\left( w_t^2 \int _0^{-\frac{\mu y_{t-1}}{\sqrt{n}}}\mathrm{d}s \int _0^{-\frac{\mu y_{t-1}}{\sqrt{n}}}(\psi (u_t+s)-\psi (u_t))^2\mathrm{d}s\bigg |{\mathcal {F}}_{t-1}\right) \nonumber \\&\le \sum _{t=1}^n w_t^2 \frac{|\mu y_{t-1}|}{\sqrt{n}}\left| \int _0^{-\frac{\mu y_{t-1}}{\sqrt{n}}}\textsf {E}(\psi (u_t+s)-\psi (u_t))^2\mathrm{d}s\right| \nonumber \\&=\frac{\mu ^2}{n} \sum _{t=1}^n w_t^2 y_{t-1}^2\cdot o(1). \end{aligned}$$
(A.9)

Combined with (A.9) and Lemma A.2, it leads to \(\sum _{t=1}^n\textsf {E}B_t^2(\mu )\rightarrow 0,\) which implies

$$\begin{aligned}&\textsf {E}\Big (\sum _{t=1}^n(B_t(\mu )-\textsf {E}(B_t(\mu )|{\mathcal {F}}_{t-1}))\Big )^2\\&\quad =\sum _{t=1}^n\textsf {E}(B_t(\mu )-\textsf {E}(B_t(\mu )|{\mathcal {F}}_{t-1}))^2\\&\quad \le 2\sum _{t=1}^n\textsf {E}B^2_t(\mu )\rightarrow ~0.~ \end{aligned}$$

Hence, we have

$$\begin{aligned} L_n(\mu )=\frac{\lambda \mu ^2}{2}\left( \frac{1}{n} \sum _{t=1}^{n}w_ty_{t-1}^2\right) -\mu A_n+o_p(1), \end{aligned}$$
(A.10)

and this, together with Lemma A.2, gives

$$\begin{aligned} L_n(\mu ){\mathop {\rightarrow }\limits ^{d}} \frac{\lambda \mu ^2}{2}\kappa -\mu A, \end{aligned}$$

where \(A\sim N(0,\tau \upsilon )\). Then, from Assumption 2.1 and Lemma A.1, we have

$$\begin{aligned} {{\hat{\beta }}}_n=\sqrt{n}({{\hat{\phi }}}_{SM}-\phi _0){\mathop {\rightarrow }\limits ^{d}} \frac{A}{\lambda \kappa }\sim N\left( 0,\frac{\tau \upsilon }{\lambda ^2\kappa ^2}\right) , \end{aligned}$$

which completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, KA., Li, T., Ni, C. et al. Asymptotics for the conditional self-weighted M-estimator of GRCA(1) models with possibly heavy-tailed errors. Stat Papers 62, 1407–1419 (2021). https://doi.org/10.1007/s00362-019-01141-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-019-01141-8

Keywords

AMS 2010 subject classification

Navigation