Skip to main content
Log in

Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean for general Hurst parameter

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, we deal with least squares estimator for the drift parameters of the fractional Ornstein–Uhlenbeck process with periodic mean function for all the Hurst parameter range \(H\in (0,1)\). More precisely, we extend the strong consistency proved in Bajja et al. (J Korean Stat Soc 46:608–622, 2017) for \(\frac{1}{2}<H<1\) to more general Hurst parameter \(0<H<1\). We also discuss the asymptotic normality given in Dehling et al. (Stat Inference Stoch Process 20:1–14, 2017) and Bajja et al. (J Korean Stat Soc 46:608–622, 2017). By the results in Hu et al. (Stat Inference Stoch Process 22:111–142, 2019), two different central limit theorems are proved when the Hurst parameter \(H\in (0,\frac{1}{2})\) and \(H\in (\frac{1}{2},1)\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajja S, Es-Sebaiy K, Viitasaari L (2017) Least squares estimator of fractional Ornstein Uhlenbeck processes with periodic mean. J Korean Stat Soc 46:608–622

    Article  MathSciNet  Google Scholar 

  • Bercu B, Proïa F, Savy N (2014) On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes. Stat Probab Lett 85:36–44

    Article  MathSciNet  Google Scholar 

  • Brockwell PJ, Davis RA, Yang Y (2007) Estimation for non-negative Lévy-driven Ornstein-Uhlenbeck processes. J Appl Probab 44:977–989

    Article  MathSciNet  Google Scholar 

  • Brouste A, Iacus SM (2013) Parameter estimation for the discretely observed fractional Ornstein-Uhlenbeck process and the Yuima R package. Comput Stast 28:1529–1547

    Article  MathSciNet  Google Scholar 

  • Cheridito P, Kawaguchi H, Maejima M (2003) Fractional Ornstein-Uhlenbeck processes. Electron J Probab 8:1–14

    Article  MathSciNet  Google Scholar 

  • Dehling H, Franke B, Woerner JHC (2017) Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean. Stat Inference Stoch Process 20:1–14

    Article  MathSciNet  Google Scholar 

  • El Machkouri M, Es-Sebaiy K, Ouknine Y (2016) Least squares estimator for nonergodic Ornstein-Uhlenbeck processes driven by Gaussian processes. J Korean Stat Soc 45:329–341

    Article  Google Scholar 

  • Franke B, Kott T (2013) Parameter estimation for the drift of a time-inhomogeneous jump diffusion process. Stat Neerlandica 67:145–168

    Article  MathSciNet  Google Scholar 

  • Hu Y, Nualart D (2010) Parameter estimation for fractional Ornstein-Uhlenbeck processes. Stat Probab Lett 80:1030–1038

    Article  MathSciNet  Google Scholar 

  • Hu Y, Jolis M, Tindel S (2013) On Stratonovich and Skorohod stochastic calculus for Gaussian processes. Ann Probab 41:1656–1693

    Article  MathSciNet  Google Scholar 

  • Hu Y, Nualart D, Zhou H (2019) Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter. Stat Inference Stoch Process 22:111–142

    Article  MathSciNet  Google Scholar 

  • Hu Y, Nualart D, Zhou H (2018) Drift parameter estimation for nonlinear stochastic differential equations driven by fractional Brownian motion. Stochastics. https://doi.org/10.1080/17442508.2018.1563606

  • Jiang H, Dong X (2015) Parameter estimation for the non-stationary Ornstein-Uhlenbeck process with linear drift. Stat Pap 56:257–268

    Article  MathSciNet  Google Scholar 

  • Kleptsyna M, Le Breton A (2002) Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat Inference Stoch Process 5:229–248

    Article  MathSciNet  Google Scholar 

  • Kloeden P, Neuenkirch A (2007) The pathwise convergence of approximation schemes for stochastic differential equations. LMS J Comput Math 10:235–253

    Article  MathSciNet  Google Scholar 

  • Lee C, Song J (2016) On drift parameter estimation for reflected fractional Ornstein-Uhlenbeck processes. Stochastic 88:751–778

    Article  MathSciNet  Google Scholar 

  • Long H (2009) Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises. Stat Probab Lett 79:2076–2085

    Article  Google Scholar 

  • Long H, Shimizu Y, Sun W (2013) Least squares estimators for discretely observed stochastic processes driven by small Lévy noises. J Multivariate Anal 116:422–439

    Article  MathSciNet  Google Scholar 

  • Long H, Ma C, Shimizu Y (2017) Least squares estimators for stochastic differential equations driven by small Lévy noises. Stoch Process Appl 127:1475–1495

    Article  Google Scholar 

  • Ma C (2010) A note on “Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises”. Stat Probab Lett 80:1528–1531

    Article  Google Scholar 

  • Ma C, Yang X (2014) Small noise fluctuations of the CIR model driven by \(\alpha \)-stable noises. Stat Probab Lett 94:1–11

    Article  MathSciNet  Google Scholar 

  • Nualart D (2006) The Malliavin Calculus and related topics, 2nd edn. Springer, Secaucus

    MATH  Google Scholar 

  • Onsy BE, Es-Sebaiy K, Viens FG (2017) Parameter estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise. Stochastic 89:431–468

    Article  MathSciNet  Google Scholar 

  • Shen G, Yu Q (2017) Least squares estimator for Ornstein-Uhlenbeck processes driven by fractional Lévy processes from discrete observations. Stat Pap. https://doi.org/10.1007/s00362-017-0918-4

  • Xiao W, Zhang W, Xu W (2011) Parameter estimation for fractional Ornstein-Uhlenbeck processes at discrete observation. Appl Math Model 35:4196–4207

    Article  MathSciNet  Google Scholar 

  • Xiao W, Yu J (2019) Asymptotic theory for estimating drif parameters in the fractional Vasicek models. Econ Theory 35:198–231

    Article  Google Scholar 

  • Xiao W, Yu J (2019) Asymptotic theory for rough fractional vasicek models. Econ Lett 177:26–29

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referees and the editor for their insightful and valuable comments which have greatly improved the presentation of the paper. Q. Yu is partially supported by National Natural Science Foundation of China (Grant No.11871219), ECNU Academic Innovation Promotion Program for Excellent Doctoral Students (Grant No.YBNLTS2019-010) and the Scientific Research Innovation Program for Doctoral Students in Faculty of Economics and Management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we turn to the Lemmas give the convergence of the stochastic integral driven by fBm are available in Lemmas 17-19 of Hu et al. (2019) and Hu and Nualart (2010), which technical results used in various proofs of this paper.

Lemma 6.1

Let

$$\begin{aligned} F_T=\int _0^T\int _0^Te^{-\alpha |t-s|}dB_t^HdB_s^H \end{aligned}$$

and

$$\begin{aligned} \widetilde{F}_T=T^{2H}\int _0^1\int _0^1e^{-\alpha T|t-s|}dB_t^HdB_s^H. \end{aligned}$$

Moreover, let \(S_1=I_2(\delta _{0,1})\) is the Rosenblatt random variable and \(\delta _{0,1}\) is the Dirac-type distributed random variable defined in (2.6) of Hu et al. (2019). Then we have the following convergence results.

  1. (i)

    When \(0<H<\frac{1}{2}\), we have

    $$\begin{aligned} \lim _{T\rightarrow \infty }\mathbb {E}(\frac{1}{T}F^2_T)=4H^2\alpha ^{1-4H}(\varGamma (2H))^2 \Big ((4H-1)+\frac{2\varGamma (2-4H)\varGamma (4H)}{\varGamma (1-2H)\varGamma (2H)}\Big ). \end{aligned}$$
  2. (ii)

    When \(\frac{1}{2}\le H<\frac{3}{4}\), we have

    $$\begin{aligned} \lim _{T\rightarrow \infty }\mathbb {E}(\frac{1}{T}F^2_T)=4H^2(4H-1)\alpha ^{1-4H} \Big ((\varGamma (2H))^2+\frac{\varGamma (2H)\varGamma (3-4H)\varGamma (4H-1)}{\varGamma (2-2H)}\Big ). \end{aligned}$$
  3. (iii)

    When \(H=\frac{3}{4}\), we have

    $$\begin{aligned} \lim _{T\rightarrow \infty }\frac{\mathbb {E}(F^2_T)}{T\log (T)}=\frac{9}{4}\alpha ^{-2}. \end{aligned}$$
  4. (iv)

    When \(\frac{3}{4}<H<1\), we have

    $$\begin{aligned} \lim _{T\rightarrow \infty }\mathbb {E}(T^{2-4H}F^2_T)=\frac{16\beta _H^2\alpha ^{-2}}{(4H-2)(4H-3)} \end{aligned}$$

    and

    $$\begin{aligned} \lim _{T\rightarrow \infty }\mathbb {E}(T^{1-2H}S_1\widetilde{F}_T)=\frac{8\beta _H^2 \alpha ^{-1}}{(4H-2)(4H-3)}, \end{aligned}$$

    where \(\beta _H=H(2H-1)\).

Lemma 6.2

Let the stochastic process \(Y_t=e^{-\alpha t}\int _0^te^{\alpha s}dB_s^H\). Then, as \(T\rightarrow \infty \),

$$\begin{aligned} \frac{1}{T}\int _0^TY_t^2dt\rightarrow \alpha ^{-2H}H\varGamma (2H), ~~a.s. \text {and in} ~~L^2. \end{aligned}$$
(6.1)

Lemma 6.3

Let \(\widetilde{Y}_t\) be defined by

$$\begin{aligned} \widetilde{Y}_t=e^{-\alpha t}\int _{-\infty }^te^{\alpha s}dB_s^H=Y_t+e^{-\alpha t}\xi , \end{aligned}$$

where \(\xi =\int _{-\infty }^0e^{\alpha s}dB_s^H\). Then, \(\widetilde{Y}_t\) is Gaussian, stationary and ergodic for all \(H\in (0,1)\) and for any \(\beta >0\), \(\frac{\widetilde{Y}_T}{T^{\beta }}\) converges almost surely to zero as T tends to infinity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q. Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean for general Hurst parameter. Stat Papers 62, 795–815 (2021). https://doi.org/10.1007/s00362-019-01113-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-019-01113-y

Keywords

Mathematics Subject Classification

Navigation