Advertisement

Estimation of partially linear single-index spatial autoregressive model

  • Suli Cheng
  • Jianbao ChenEmail author
Regular Article
  • 69 Downloads

Abstract

In this paper, we first present partially linear single-index spatial autoregressive model and propose its profile maximum likelihood estimators (PMLE). Subsequently, consistency and asymptotic normality of the estimators for parameters and unknown link function are derived under some regular conditions. Thirdly, Monte Carlo simulations are used to investigate the performances of these estimators in finite sample cases. Finally, the proposed method is illustrated with the real data set of Boston Housing Price.

Keywords

Partially linear single-index spatial autoregressive model Profile maximum likelihood estimation Consistency Asymptotic normality Monte Carlo simulation 

Notes

Acknowledgements

The authors thanks the editors Christine H. Müller and Jessica Jeske for the valuable suggestions. We are also grateful to referees for careful reading of the manuscript and comments with lead to an improved version of the paper. This work is supported by National Social Sciences Foundation of China (16BTJ018), National Natural Science Foundation of China (71503220), Key Research Base for Humanities and Social Sciences of Ministry of Education (15JJD790029), Humanities and Social Sciences of Ministry of Education of China (13YJA9100002), Natural Science Foundation of Fujian Province (2017J01396, 2018J05002), Program for Innovative Research Team in Science and Technology in Fujian Province University, Fujian Normal University Innovation Team Foundation “Probability and Statistics: Theory and Application” (IRTL1704).

References

  1. Anselin L (1988) Spatial econometrics: methods and models. Kluwer Academic Publishers, The NetherlandszbMATHGoogle Scholar
  2. Anselin L, Bera AK (1998) Spatial dependence in linear regression models with an introduction to spatial econometrics. Handbook of applied economics statistics. Marcel Dekker, New YorkGoogle Scholar
  3. Antoniadis A, Grégoire G, Mckeague IW (2004) Bayesian estimation in single-index models. Stat Sin 14(4):1147–1164MathSciNetzbMATHGoogle Scholar
  4. Carroll RJ, Fan J, Gijbels I, Wand MP (1997) Generalized partially linear single-index models. J Am Stat Assoc 92(438):477–489MathSciNetzbMATHGoogle Scholar
  5. Case AC (1991) Spatial patterns in household demand. Econometrica 59(4):953–965Google Scholar
  6. Chen J, Qiao N (2017) Estimation of semi-parametric varying coefficient spatial error regression model. J Quant Tech Econ 4:129–146Google Scholar
  7. Chen J, Sun L (2015) Spatial lag single-index panel model with random effects. Stat Res 32(1):95–101Google Scholar
  8. Chen J, Sun L (2017) Estimation of varying-coefficient spatial auto-regression panel model with random effects. Stat Res 34(5):118–128Google Scholar
  9. Cressie NAC (1993) Statistics for spatial data. Wiley, New YorkzbMATHGoogle Scholar
  10. Du J, Sun X, Cao R, Zhang Z (2018) Statistical inference for partially linear additive spatial autoregressive models. Spat Stat 25:52–67MathSciNetGoogle Scholar
  11. Guo C, Yang H, Lv J (2016) Two step estimations for a single-index varying-coefficient model with longitudinal data. Stat Pap 6:1–27Google Scholar
  12. Härdle W, Hall P, Ichimura H (1993) Optimal smoothing in single-index models. Ann Stat 21(1):157–178MathSciNetzbMATHGoogle Scholar
  13. Harrison DJ, Rubinfeld DL (1978) Hedonic housing prices and the demand for clean air. J Environ Econ Manag 5:81–102zbMATHGoogle Scholar
  14. Horowitz JL (2009) Semiparametric and nonparametric methods in econometrics. Springer Verlag Gmbh, New YorkzbMATHGoogle Scholar
  15. Ichimura H (1993) Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J Econom 58(s 1–2):71–120MathSciNetzbMATHGoogle Scholar
  16. Kazar BM, Celik M (2012) Spatial autoregression (SAR) model. Springer Press, New YorkzbMATHGoogle Scholar
  17. Kelejian HH, Prucha IR (1999) A generalized moments estimator for the autoregressive parameter in a spatial model. Int Econ Rev 40(2):509–533MathSciNetGoogle Scholar
  18. Kelejian HH, Prucha IR (2010) Specification and estimation of spatial autoregressive models with autoregressive and heteroscedastic disturbances. J Econom 157(1):53–67zbMATHGoogle Scholar
  19. Lee J (2015) A semiparametric single index model with heterogeneous impacts on an unobserved variable. J Econom 184(1):13–36MathSciNetzbMATHGoogle Scholar
  20. Lee LF (2004) Asymptotic distribution of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 72(6):1899–1925MathSciNetzbMATHGoogle Scholar
  21. Li J, Li Y, Zhang R (2017) B spline variable selection for the single index models. Stat Pap 58(3):691–706MathSciNetzbMATHGoogle Scholar
  22. Li K, Chen J (2013) Profile maximum likelihood estimation of semi-parametric varying coefficient spatial lag model. J Quant Tech Econ 4:85–98Google Scholar
  23. Li K, Chen J (2018) GMM estimation of nonparametric spatial lag model. Appl Math J Chin Univ 33(2):140–156MathSciNetGoogle Scholar
  24. Linton OB, Härdle W (1996) Estimation of additive regression models with links. Biometrika 83(3):529–540MathSciNetzbMATHGoogle Scholar
  25. Liu X, Chen J, Cheng S (2018) A penalized quasi-maximum likelihood method for variable selection in spatial autoregressive model. Spat Stat 25:86–104MathSciNetGoogle Scholar
  26. Lv Y, Zhang R, Zhao W, Liu J (2015) Quantile regression and variable selection of partial linear single-index model. Ann Inst Stat Math 67(2):375–409MathSciNetzbMATHGoogle Scholar
  27. Mack PY, Silverman WB (1982) Weak and strong uniform consistency of kernel regression estimations. Probab Theory Relat Fields 61(3):405–415zbMATHGoogle Scholar
  28. Martinussen T, Scheike TH (1999) A semiparametric additive regression model for longitudinal data. Biometrika 86(3):691–702MathSciNetzbMATHGoogle Scholar
  29. Pang Z, Xue L (2012) Estimation for the single-index models with random effects. Comput Stat Data Anal 56(6):1837–1853MathSciNetzbMATHGoogle Scholar
  30. Stute W, Zhu LX (2005) Nonparametric checks for single-index models. J Multivar Anal 33(3):1048–1083MathSciNetzbMATHGoogle Scholar
  31. Su L (2012) Semiparametric GMM estimation of spatial autoregressive models. J Econom 167(2):543–560MathSciNetzbMATHGoogle Scholar
  32. Su L, Jin S (2010) Profile quasi-maximum likelihood estimation of partially linear spatial autoregressive models. J Econom 157(1):18–33MathSciNetzbMATHGoogle Scholar
  33. Sun Y (2017) Estimation of single-index model with spatial interaction. Reg Sci Urban Econ 62:36–45Google Scholar
  34. Sun Y, Yan H, Zhang W, Lu Z (2014) A semiparametric spatial dynamic model. Ann Stat 42(2):700–727MathSciNetzbMATHGoogle Scholar
  35. Wang JL, Xue L, Zhu LX, Chong YS (2010) Estimation for a partial-linear single-index model. Ann Stat 38(1):246–274MathSciNetzbMATHGoogle Scholar
  36. Wang L, Yang L (2010) Spline estimation of single-index models. Stat Sin 19(2):765–783MathSciNetzbMATHGoogle Scholar
  37. White H (1984) Asymptotic theory for econometricians. Academic Press, CamnbridgeGoogle Scholar
  38. Xia Y, Härdle W (2006) Semi-parametric estimation of generalized partially linear single-index models. J Multivar Anal 97(5):1162–1184zbMATHGoogle Scholar
  39. Yu P, Du J, Zhang Z (2018) Single-index partially functional linear regression model. Stat Pap, forthcoming.  https://doi.org/10.1007/s00362-018-0980-6
  40. Yu Y, Ruppert D (2002) Penalized spline estimation for partially linear single-index models. J Am Stat Assoc 97(460):1042–1054MathSciNetzbMATHGoogle Scholar
  41. Yu Y, Ruppert D (2004) Root-n consistency of penalized spline estimator for partially linear single-index models under general euclidean space. Stat Sin 14(2):449–455MathSciNetzbMATHGoogle Scholar
  42. Zhang R, Huang Z (2009) Statistical inference on parametric part for partially linear single-index model. Sci China Ser A 52(10):2227–2242MathSciNetzbMATHGoogle Scholar
  43. Zhang T, Yuan D, Ma J, Hu X (2017) Assessing white noise assumption with semi-parametric additive partial linear models. Stat Pap 58:417–431MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mathematics and InformaticsFujian Normal UniversityFuzhouPeople’s Republic of China

Personalised recommendations