Portfolio selection: shrinking the time-varying inverse conditional covariance matrix

Abstract

In this paper we consider a portfolio selection problem under the global minimum variance model where the optimal portfolio weights only depend on the covariance matrix of asset returns. First, to reflect the rapid changes of financial markets, we incorporate a time-varying factor in the covariance matrix. Second, to improve the estimation of the covariance matrix we use the shrinkage method. Based on these two key aspects, we propose a framework for shrinking the time-varying inverse conditional covariance matrix in order to enhance the performance of the portfolio selection. Furthermore, given the shortcoming that the inverse covariance matrix is inaccurate in a number of cases, we develop a new method that transforms the inverse of the covariance matrix into a product to improve the performance of the inverse covariance matrix, and prove its theoretical availability. The proposed portfolio selection strategy is applied to analyze real-world data and the numerical studies show it performs well.

This is a preview of subscription content, log in to check access.

References

  1. Ausin MC, Lopes HF (2010) Time-varying joint distribution through copulas. Comput Stat Data Anal 54(11):2383–2399

    MathSciNet  MATH  Article  Google Scholar 

  2. Bai JS, Shi SZ (2011) Estimating high dimensional covariance matrices and its applications. Ann Econ Finan 12(2):199–215

    MathSciNet  Google Scholar 

  3. Bastürk N, Almeida RJ (2016) Time varying correlation estimation using probabilistic fuzzy systems. Commun Comput Inform Sci 611:752–763

    Article  Google Scholar 

  4. Bodnar T, Mazurb S, Podgórskib K (2016) Singular inverse Wishart distribution and its application to portfolio theory. J Multivar Anal 143:314–326

    MathSciNet  Article  Google Scholar 

  5. Bollerslev T (1990) Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. Rev Econ Stat 72(3):498–505

    Article  Google Scholar 

  6. Chopra V, Ziemba W (1993) The effect of errors in means, variances, and covariances on optimal portfolio choice. J Portf Manag 19(2):6–12

    Article  Google Scholar 

  7. DeMiguel V, Garlappi L, Uppal R (2009a) Optimal versus naive diversification: how inefficient is the \(1/N\) portfolio strategy? Rev Finan Stud 22(5):1915–1953

    Article  Google Scholar 

  8. DeMiguel V, Garlappi L, Nogales FJ, Uppal R (2009b) A generalized approach to portfolio optimization: improving performance by constraining portfolio norms. Manag Sci 55(5):798–812

    MATH  Article  Google Scholar 

  9. Ding T, Kou Y, Ma ZJ, Zhang YY, Yan H (2017) A robust mean variance optimization model for economic dispatch with wind power integration and evenly distributed Pareto front generation. Int Trans Electr Energy Syst 27(7):e2324

    Article  Google Scholar 

  10. Engle RF (2002) Dynamic conditonal correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J Bussiness Econ Stat 20(3):339–350

    Article  Google Scholar 

  11. Engle RF, Granger CWJ, Kraft D (1984) Combining competing forecasts of inflation using a bivariate ARCH model. J Econ Dyn Control 8(2):151–165

    MathSciNet  Article  Google Scholar 

  12. Frahm G (2010) Linear statistical inference for global and local minimum variance portfolios. Stat Pap 51(4):789–812

    MathSciNet  MATH  Article  Google Scholar 

  13. Gohout W, Specht K (2007) Mean-variance portfolios using Bayesian vector-autoregressive forcasts. Stat Pap 48(3):403–418

    MATH  Article  Google Scholar 

  14. Ikeda Y, Kubokawa T (2016) Linear shrinkage estimation of large covariance matrices using factor models. J Multivar Anal 152:61–81

    MathSciNet  MATH  Article  Google Scholar 

  15. James W, Stein C (1961) Estimation with quadratic loss. In: Proceedings of the 4th Berkeley symposium on mathematical statistics and probability. University of California Press, Los Angeles, pp 361–379

  16. Jobson DJ, Korkie BM (1980) Estimation for Markowitz efficient portfolios. J Am Stat Assoc 75(371):544–554

    MathSciNet  MATH  Article  Google Scholar 

  17. Kourtis A, Dotsis G, Markellos RH (2012) Parameter uncertainty in portfolio selection: shrinkage the inverse covariance matrix. J Bank Financ 36(9):2522–2531

    Article  Google Scholar 

  18. Kroner KF, Claessens S (1991) Optimal dynamic hedging portfolios and the currency composition of external debt. J Int Money Financ 10(1):131–148

    Article  Google Scholar 

  19. Lan W, Wang HS, Tsai C (2012) A Bayesian information criterion for portfolio selection. Comput Stat Data Anal 56(1):88–99

    MathSciNet  MATH  Article  Google Scholar 

  20. Ledoit O, Wolf M (2003) Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J Empir Financ 10(5):603–621

    Article  Google Scholar 

  21. Ledoit O, Wolf M (2004) A well-conditioned estimator for large-dimensional covariance matrices. J Multivar Anal 88:365–411

    MathSciNet  MATH  Article  Google Scholar 

  22. Markowitz HM (1952) Portfolio selection. J Financ 7(1):77–91

    Google Scholar 

  23. Merton RC (1980) On estimating the expected return on the market: an exploratory investigation. J Financ Econ 8(4):323–361

    Article  Google Scholar 

  24. Santos AAP, Moura GV (2014) Dynamic factor multivariate GARCH model. Comput Stat Data Anal 76:606–617

    MathSciNet  MATH  Article  Google Scholar 

  25. Sharpe WF (1963) A simplified model for portfolio analysis. Manag Sci 9(2):277–293

    Article  Google Scholar 

  26. Stein C (1975) Estimation of a covariance matrix. Rietz Lecture, 39th Annual Meeting IMS. Atlanta

  27. Stevens GVG (1998) On the inverse of the covariance matrix in portfolio analysis. J Financ 53(5):1821–1827

    Article  Google Scholar 

  28. Tse YK, Tsui AKC (2002) A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations. J Business Econ Stat 20(3):351–362

    MathSciNet  Article  Google Scholar 

  29. Wied D, Ziggel D, Berens T (2013) On the application of new tests for structural changes on global minimum-variance portfolios. Stat Pap 54(4):955–975

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Editor and Referees very much for their constructive comments, which significantly helped us to improve the manuscript. The first two authors’ research was supported by the Fundamental Research Funds for Central Universities, China (Nos. JBK1607121, JBK120509, JBK140507, JBK141111). This study was also supported by the National Natural Science Foundation of China (Nos. 11471264, 11401148, 51437003).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuangzhe Liu.

Appendix

Appendix

A1. Complete expression of (8)

Assume that G, M and \(G+M\) are invertible matrices, then we have

$$\begin{aligned}&(G+M)^{-1} = G^{-1}-G^{-1}(I+MG^{-1})^{-1}MG^{-1}\\&\quad =M^{-1}-M^{-1}(I+GM^{-1})^{-1}GM^{-1} \\&\quad =\frac{1}{2}(G^{-1}+M^{-1})-\frac{1}{2}G^{-1}(I+MG^{-1})^{-1}MG^{-1}-\frac{1}{2}M^{-1}(I+GM^{-1})^{-1}GM^{-1}. \end{aligned}$$

Using the above formula, we have

$$\begin{aligned} \varSigma _{t}^{-1}= & {} (\kappa _{1}\varSigma _{t-1}+\kappa _{2}\varPsi _{t-1}+\kappa _{3}\mathrm {H}_{c})^{-1} \\= & {} P_{1}-(P_{2}+P_{3}+P_{4}+P_{5}), \end{aligned}$$

where

$$\begin{aligned} P_{1}= & {} \frac{1}{4\kappa _{1}}\varSigma _{t-1}^{-1} +\frac{1}{4\kappa _{2}}\varPsi _{t-1}^{-1}+\frac{1}{2\kappa _{3}}\mathrm {H}_{c}^{-1}, \\ P_{2}= & {} \frac{\kappa _{2}}{4\kappa _{1}^{2}}\varSigma _{t-1}^{-1}\left( I+\frac{\kappa _{2}}{\kappa _{1}}\varPsi _{t-1}\varSigma _{t-1}^{-1}\right) \varPsi _{t-1}\varSigma _{t-1}^{-1}, \\ P_{3}= & {} \frac{\kappa _{1}}{4\kappa _{2}^{2}} \varPsi _{t-1}^{-1}\left( I+\frac{\kappa _{1}}{\kappa _{2}}\varSigma _{t-1}\varPsi _{t-1}^{-1}\right) \varSigma _{t-1}\varPsi _{t-1}^{-1}, \\ P_{4}= & {} \frac{\kappa _{3}}{2}(\kappa _{1}\varSigma _{t-1}+\kappa _{2}\varPsi _{t-1})^{-1}\left( I+\kappa _{3}\mathrm {H}_{c}\left( \kappa _{1}\varSigma _{t-1}+\kappa _{2}\varPsi _{t-1}\right) ^{-1}\right) ^{-1} \\&\quad \times \, \mathrm {H}_{c}(\kappa _{1}\varSigma _{t-1}+\kappa _{2}\varPsi _{t-1})^{-1}, \\ \\ P_{5}= & {} \frac{1}{2}\mathrm {H}_{c}\left( I+\frac{1}{\kappa _{3}}(\kappa _{1}\varSigma _{t-1}+\kappa _{2}\varPsi _{t-1})\mathrm {H}_{c}^{-1}\right) ^{-1}(\kappa _{1}\varSigma _{t-1}+\kappa _{2}\varPsi _{t-1})\mathrm {H}_{c}^{-1}. \end{aligned}$$

A2. Proof of Proposition 1

$$\begin{aligned} {\widehat{\beta }}_{i}= & {} arg\min _{\beta _{i}} var \left( ({\widehat{w}}^{min}({\widehat{\varSigma }}^{-1}_{t}))^\top r_{t}\right) \\= & {} arg\min _{\beta _{i}} var \{ \beta _{1}{\widehat{w}}^{min}({{\widehat{\varSigma }}^{-1}_{t-1}})^\top r_{t}+\beta _{2}{\widehat{w}}^{min}({\widehat{\varPsi }}^{-1}_{t-1})^\top r_{t}\\&+\, \beta _{3}{\widehat{w}}^{min}(\widehat{\mathrm {H}}^{-1}_{c})^\top r_{t} +(1-\beta _{1}-\beta _{2}-\beta _{3}){\widehat{w}}^{min}({\widehat{\varLambda }})^\top r_{t}\}\\= & {} arg\min _{\beta _{i}} \{\beta _{1}^{2} var(r_{t}({{\widehat{\varSigma }}^{-1}_{t-1}}))+\beta _{2}^{2} var(r_{t}({\widehat{\varPsi }}^{-1}_{t-1}))+\beta _{3}^{2} var(r_{t}(\widehat{\mathrm {H}}^{-1}_{c}))\\&+\,(1-\beta _{1}-\beta _{2}-\beta _{3})^{2} var(r_{t}({\widehat{\varLambda }})) +2\beta _{1}\beta _{2}cov(r_{t}({{\widehat{\varSigma }}^{-1}_{t-1}}),r_{t}({\widehat{\varPsi }}^{-1}_{t-1})) \\&+\, 2\beta _{1}\beta _{3}cov(r_{t}({{\widehat{\varSigma }}^{-1}_{t-1}}),r_{t}(\widehat{\mathrm {H}}^{-1}_{c}))\\&+\, 2\beta _{1}(1-\beta _{1}-\beta _{2}-\beta _{3})cov(r_{t}({{\widehat{\varSigma }}^{-1}_{t-1}}),r_{t}({\widehat{\varLambda }}))\\&+\, 2\beta _{2}\beta _{3}cov(r_{t}({\widehat{\varPsi }}^{-1}_{t-1}),r_{t}(\widehat{\mathrm {H}}^{-1}_{c}))\\&+\, 2\beta _{2}(1-\beta _{1}-\beta _{2}-\beta _{3})cov(r_{t}({\widehat{\varPsi }}^{-1}_{t-1}),r_{t}({\widehat{\varLambda }}))\\&+\, \beta _{3}(1-\beta _{1}-\beta _{2}-\beta _{3})cov(r_{t}(\widehat{\mathrm {H}}^{-1}_{c}),r_{t}({\widehat{\varLambda }}))\} \end{aligned}$$

Taking the derivative of \({\widehat{\beta }}_{i}\) with respect to \(\beta _{1}\), we obtain

$$\begin{aligned}&\beta _{1}(v_{11}+v_{44}-2v_{14})+\beta _{2}(v_{44}+v_{12}-v_{14}-v_{24})\\&\quad +\,\beta _{3}(v_{44}+v_{13}-v_{14}-v_{34})=v_{44}-v_{14}. \end{aligned}$$

Similarly, we have

$$\begin{aligned}&\beta _{1}(v_{12}+v_{44}-v_{14}-v_{24})+\beta _{2}(v_{44}+v_{22}-2v_{24})\\&\quad +\,\beta _{3}(v_{44}+v_{23}-v_{24}-v_{34})=v_{44}-v_{24}, \\&\beta _{1}(v_{13}+v_{44}-v_{14}-v_{34})+\beta _{2}(v_{44}+v_{23}-v_{24}-v_{34})\\&\quad +\,\beta _{3}(v_{44}+v_{33}-2v_{34})=v_{44}-v_{34}. \end{aligned}$$

We can reformulate the above formulas in terms of D and b, \(DK=b\), where \(K=(\beta _{1},\beta _{2},\beta _{3})^\top \). So, \(\varXi =D^{-1}b\). The proof is complete. \(\square \)

A3. Proof of Proposition 2

Similar to the proof of Proposition 1, we can get \(DK=b\), where \(K=(\beta _{1},\beta _{2},\beta _{3},\beta _{4})^\top \). Then, we have \(\varXi =D^{-1}b\). The proof is complete. \(\square \)

A4. Proof of Proposition 3

Let \(\varPhi =\varOmega -I\), then \(\varPhi \) and \(I-\varPhi +\varPhi ^{2}\) are symmetric.

$$\begin{aligned} I-\varPhi +\varPhi ^{2}= & {} I-(\varOmega -I)+(\varOmega -I)^{2} \\= & {} \varOmega ^{2}-3\varOmega +3I \\= & {} \left( \varOmega -\frac{3}{2}I\right) ^{2}+\frac{3}{4}I>\mathbf{0 } \\ \end{aligned}$$

So, \(I-\varPhi +\varPhi ^{2}\) is positive definite. The proof is complete. \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Ma, T. & Liu, S. Portfolio selection: shrinking the time-varying inverse conditional covariance matrix. Stat Papers 61, 2583–2604 (2020). https://doi.org/10.1007/s00362-018-1059-0

Download citation

Keywords

  • Inverse conditional covariance matrix
  • Portfolio selection
  • Shrinkage
  • Time-varying