Advertisement

Statistical Papers

, Volume 59, Issue 4, pp 1379–1410 | Cite as

Testing for serial independence in vector autoregressive models

  • Simos G. Meintanis
  • Joseph Ngatchou-Wandji
  • James AllisonEmail author
Regular Article

Abstract

We consider tests for serial independence of arbitrary finite order for the innovations in vector autoregressive models. The tests are expressed as L2-type criteria involving the difference of the joint empirical characteristic function and the product of corresponding marginals. Asymptotic as well as Monte-Carlo results are presented.

Keywords

Empirical characteristic function Serial dependence tests VAR models 

Notes

Acknowledgements

The authors would like to thank the Editor and the two referees for their constructive comments that led to an improved paper. The third author’s work is based on research supported by the National Research Foundation (NRF). Any opinion, finding and conclusion or recommendation expressed in this material is that of the author and the NRF does not accept any liability in this regard.

References

  1. Ahlgren N, Catani P (2017) Wild bootstrap tests for autocorrelation in vector autoregressive models. Stat. Pap. 58:1189–1216MathSciNetCrossRefGoogle Scholar
  2. Bilodeau M, Lafaye de Micheaux P (2005) A multivariate empirical characteristic function test of independence with normal marginals. J. Multivar. Anal. 95:345–369MathSciNetCrossRefGoogle Scholar
  3. Bouhaddioui C, Roy R (2006) A generalized portmanteau test for independence of two infinite-order vector autoregressive series. J. Time Ser. Anal. 27:505–544MathSciNetCrossRefGoogle Scholar
  4. Box GEP, Jenkins GM (1970) Time Series Analysis: Forecasting and Control. Holden-Day, San FranciscozbMATHGoogle Scholar
  5. Brockwell PJ, Davis RA (1986) Time Series: Theory and Methods. Springer, New YorkzbMATHGoogle Scholar
  6. Csörgő S (1985) Testing for independence by the empirical characteristic function. J. Multivar. Anal. 16:290–299MathSciNetCrossRefGoogle Scholar
  7. Deheuvels P, Martynov GV (1995) Testing for independence by the empirical characteristic function. Commun. Stat. Theory Methods 25:871–908CrossRefGoogle Scholar
  8. Duchense P, Roy R (2004) On consistent testing for serial correlation of of unknown form in vector time series models. J. Multivar. Anal. 89:148–180MathSciNetCrossRefGoogle Scholar
  9. El Himdi K, Roy R (1997) Test for noncorrelation of two multivariate ARMA time series. Can. J. Stat. 25:233–256MathSciNetCrossRefGoogle Scholar
  10. Fan Y, Lafaye de Micheaux P, Penev S, Salopek D (2010) Multivariate nonparametric test of independence. J. Multivar. Anal. 153:180–210MathSciNetzbMATHGoogle Scholar
  11. Fokianos K, Pitsillou M (2017) Consistent testing for pairwise dependence in time series. Technometrics 59:262–270MathSciNetCrossRefGoogle Scholar
  12. Fokianos K, Pitsillou M (2018) Testing independence for multivariate time series via the auto-distance correlation matrix. Biometrika 105:337–352MathSciNetCrossRefGoogle Scholar
  13. Giacomini R, Politis DN, White H (2013) A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators. Econometr. Theor. 29:567–589MathSciNetCrossRefGoogle Scholar
  14. Herwartz H, Lütkepohl H (2014) Structural vector autoregressions with Markov switching: combining conventional with statistical identification of shocks. J. Econometr. 183:104–116MathSciNetCrossRefGoogle Scholar
  15. Hlavká Z, Hušková M, Kirch C, Meintanis SG (2012) Monitoring changes in the error distribution of autoregressive models based on Fourier methods. TEST 21:605–634MathSciNetCrossRefGoogle Scholar
  16. Hlavká Z, Hušková M, Kirch C, Meintanis SG (2017) Fourier-type tests involving martingale difference processes. Econometr. Rev. 36:468–492MathSciNetCrossRefGoogle Scholar
  17. Hong Y (1999) Hypothesis testing in time series via the empirical characteristic function: a generalized spectral density approach. J. Am. Stat. Assoc. 94:1201–1220MathSciNetCrossRefGoogle Scholar
  18. Kallenberg O (2001) Foundations of Modern Probability, 2nd edn. Springer, New YorkzbMATHGoogle Scholar
  19. Kankainen A, Ushakov NG (1998) A consistent modification of a test for independence based on the empirical characteristic function. J. Math. Sci. (N. Y.) 89:1486–1493MathSciNetCrossRefGoogle Scholar
  20. Lahiri SN (2003) Resampling Methods for Dependent Data. Springer, New YorkCrossRefGoogle Scholar
  21. Lanne M, Lütkepohl H, Maciejowska K (2010) Structural vector autoregressions with Markov switching. J. Econ. Dyn. Control 34:121–131MathSciNetCrossRefGoogle Scholar
  22. Lütkepohl H (2005) New Introduction to Multiple Time Series. Springer, BerlinCrossRefGoogle Scholar
  23. Matsui M, Takemura A (2008) Goodness-of-fit tests for symmetric stable distributions: empirical characteristic function approach. TEST 34:546–566MathSciNetCrossRefGoogle Scholar
  24. Meintanis SG, Iliopoulos G (2008) Fourier test for multivariate independence. Comput. Stat. Data Anal. 52:1884–1895CrossRefGoogle Scholar
  25. Meintanis SG, Ngatchou-Wandji J, Taufer E (2015) Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function. J. Multivar. Anal. 140:171–192MathSciNetCrossRefGoogle Scholar
  26. Ngatchou-Wandji J (2009) Testing symmetry of the error distribution in nonlinear heteroscedastic models. Commun. Stat. Theory Methods 38:1465–1485MathSciNetCrossRefGoogle Scholar
  27. Ngatchou-Wandji J, Harel M (2013) A Cramér-von Mises test for symmetry of the error distribution in asymptotically stationary stochastic models. Stat. Inference Stoch. Process. 16(3):207–236MathSciNetCrossRefGoogle Scholar
  28. Paparoditis E (2005) Testing the fit of a vector autoregressive moving average model. J. Time Ser. Anal. 26:543–568MathSciNetCrossRefGoogle Scholar
  29. Pinske J (1998) A consistent nonparametric test for serial independence. J. Econometr. 84:205–231MathSciNetCrossRefGoogle Scholar
  30. Shao J, Tu D (1995) The Jackknife and Bootstrap. Springer, New YorkCrossRefGoogle Scholar
  31. Sims CA (1980) Macroeconomics and reality. Econometrica 48:1–48CrossRefGoogle Scholar
  32. Skaug HJ, Tjøstheim D (1993) A nonparametric test of serial independence based on the empirical distribution function. Biometrika 80:591–602MathSciNetCrossRefGoogle Scholar
  33. Skaug, H.J., Tjøstheim, D.: Testing for serial independence using measures of distance between densities. In: Robinson, P.M., Rosenblatt, M. (eds.) Lecture Notes in Statistics, vol. 115, pp. 363–377 (1996)CrossRefGoogle Scholar
  34. Su L, White H (2007) A consistent characteristic function-based test for conditional independence. J. Econometr. 141:807–834MathSciNetCrossRefGoogle Scholar
  35. Székely G, Rizzo M (2005) Hierarchical clustering via joint between-within distances: extending Ward’s minimum variance method. J. Classif. 22:151–183MathSciNetCrossRefGoogle Scholar
  36. Székely G, Rizzo M (2013) The distance correlation \(t\)-test of independence in high dimensions. J. Multivar. Anal. 117:193–213MathSciNetCrossRefGoogle Scholar
  37. Székely G, Rizzo M, Bakirov NK (2007) Measuring and testing dependence by correlation distances. Ann. Stat. 35:2769–2794MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Simos G. Meintanis
    • 1
    • 2
  • Joseph Ngatchou-Wandji
    • 3
  • James Allison
    • 2
    Email author
  1. 1.Department of EconomicsNational and Kapodistrian University of AthensAthensGreece
  2. 2.Unit for Business Mathematics and InformaticsNorth-West UniversityPotchefstroomSouth Africa
  3. 3.EHESP Sorbonne Paris Cité & Institut Élie Cartan de LorraineNancyFrance

Personalised recommendations