Skip to main content
Log in

Copula function for fuzzy random variables: applications in measuring association between two fuzzy random variables

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, a notion of fuzzy copula function is introduced by defining joint distribution function of two fuzzy random variables. Using some lemmas, it is proven that the extended fuzzy copula satisfies many desired properties used for non-fuzzy data. The proposed fuzzy copula is then applied to construct some common non-parametric measures of association between two fuzzy random variables. The proposed methods is then illustrated via some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akbari MG, Rezaei AH, Waghei Y (2009) Statistical inference about the variance of fuzzy random variables. Indian J Stat 71-B 2:206–221

    MathSciNet  MATH  Google Scholar 

  • Bustince H, Burillo P (1995) Correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst 74:237–244

    Article  MathSciNet  Google Scholar 

  • Chaudhuri B, Bhattacharya A (2001) On correlation between two fuzzy sets. Fuzzy Sets Syst 118:447–456

    Article  MathSciNet  Google Scholar 

  • Chiang DA, Lin NP (1999) Correlation of fuzzy sets. Fuzzy Sets Syst 102:221–226

    Article  MathSciNet  Google Scholar 

  • Colubi A, Domínguez-Menchero JS, López-Díaz M, Ralescu DA (2001) On the formalization of fuzzy random variables. Inf Sci 133:3–6

    Article  MathSciNet  Google Scholar 

  • Feng Y (2000) Gaussian fuzzy random variables. Fuzzy Sets Syst 111:325–330

    Article  MathSciNet  Google Scholar 

  • Gerstenkorn T, Mańko (1991) Correlation of intuitionistic fuzzy sets. Fuzzy Sets Syst 44:39–43

    Article  MathSciNet  Google Scholar 

  • Gil MA, López-Díaz M, Ralescu DA (2006) Overview on the development of fuzzy random variables. Fuzzy Sets Syst 157:2546–2557

    Article  MathSciNet  Google Scholar 

  • Gini C (1936) On the measure of concentration with special reference to income and statistics. General series. Colorado College Publication, Colorado Springs

    Google Scholar 

  • González-Rodríguez G, Colubi A, Gil MA (2006) A fuzzy representation of random variables: an operational tool in exploratory analysis and hypothesis testing. Comput Stat Data Anal 51:163–176

    Article  MathSciNet  Google Scholar 

  • Grzegorzewski P (2009) K-sample meadian test for vague data. Int J Intell Syst 24:529–539

    Article  Google Scholar 

  • Hesamina G, Chachi J (2015) Two-sample Kolmogorov-Smirnov fuzzy test for fuzzy random variables. Stat Pap 56:61–82

    Article  MathSciNet  Google Scholar 

  • Hong DH (1998) A note on correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst 95:113–117

    Article  MathSciNet  Google Scholar 

  • Hung WL, Wu JW (2002) Correlation of intuitionistic fuzzy sets by centroid method. Inf Sci 144:219–225

    Article  MathSciNet  Google Scholar 

  • Hryniewicz O (2004) Measures of association for fuzzy ordered categorical data. Adv Soft Comput 26:503–510

    MathSciNet  MATH  Google Scholar 

  • Krätschmer V (2001) A unified approach to fuzzy random variables. Fuzzy Sets Syst 123:1–9

    Article  MathSciNet  Google Scholar 

  • Kruse R, Meyer KD (1987) Statistics with vague data. Reidel Publishing Company, Dordrecht

    Book  Google Scholar 

  • Kwakernaak H (1978) Fuzzy random variables (I): defnitions and theorems. Inf Sci 15:1–29

    Article  Google Scholar 

  • Kwakernaak H (1979) Fuzzy random variables (II). Algorithms and examples for the discrete case. Inf Sci 17:253–278

    Article  MathSciNet  Google Scholar 

  • Low RKY, Alcock J, Faff R, Brailsford T (2013) Canonical vine copulas in the context of modern portfolio management: are they worth it? J Bank Finance 37:3085–3099

    Article  Google Scholar 

  • Murthy CA, Pal SK, Majumder DD (1985) Correlation between two fuzzy membership functions. Fuzzy Sets Syst 17:23–38

    Article  MathSciNet  Google Scholar 

  • Näther W (2006) Regression with fuzzy data. Comput Stat Data Anal 51:235–252

    Article  MathSciNet  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer, New York

    MATH  Google Scholar 

  • Peng J, Liu B (2004) Some properties of optimistic and pessimistic values of fuzzy. IEEE Int Conf Fuzzy Syst 2:745–750

    Google Scholar 

  • Puri ML, Ralescu DA (1985) The concept of normality for fuzzy random variables. Ann Probab 13:1373–1379

    Article  MathSciNet  Google Scholar 

  • Puri ML, Ralescu DA (1986) Fuzzy random variables. J Math Anal Appl 114:409–422

    Article  MathSciNet  Google Scholar 

  • Shapiro AF (2009) Fuzzy random variables. Insur Math Econ 44:307–314

    Article  MathSciNet  Google Scholar 

  • Sahnoun Z, DiCesare F, Bonissone PP (1991) Efficient methods for computing linguistic consistency. Fuzzy Sets Syst 39:15–26

    Article  MathSciNet  Google Scholar 

  • Sklar M (1959) Fonctions de répartition à n dimensions et leurs marges. Université Paris 8, Saint-Denis

    MATH  Google Scholar 

  • Taheri SM, Hesamian G (2011) Goodman-Kruskal measure of assosiation for fuzzy-cateforized variables. Kybernetika 47:110–122

    MathSciNet  MATH  Google Scholar 

  • Yu C (1993) Correlation of fuzzy numbers. Fuzzy Sets Syst 55:303–307

    Article  MathSciNet  Google Scholar 

Download references

Funding

This study was funded by Golestan University (Grant Number 1213565/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Ranjbar.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, V., Hesamian, G. Copula function for fuzzy random variables: applications in measuring association between two fuzzy random variables. Stat Papers 61, 503–522 (2020). https://doi.org/10.1007/s00362-017-0944-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-017-0944-2

Keywords

Mathematics Subject Classification

Navigation