Skip to main content
Log in

Some results on the computing of Tukey’s halfspace median

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Depth of the Tukey median is investigated for empirical distributions. A sharper upper bound is provided for this value for data sets in general position. This bound is lower than the existing one in the literature and, more importantly, derived under the fixed sample size practical scenario. Several results obtained in this paper are interesting theoretically and useful as well to reduce the computational burden of the Tukey median practically when \(p > 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bickel PJ (1964) On some alternative estimates for shift in the \(p\)-variate one sample problem. Ann Math Stat 35(3):1079–1090

    Article  MathSciNet  Google Scholar 

  • Brown BM (1983) Statistical use of the spatial median. J R Stat Soc Ser B 45:25–30

    MathSciNet  MATH  Google Scholar 

  • Chan TM (2004) An optimal randomized algorithm for maximum Tukey depth. In: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, pp 430–436

  • Donoho DL, Gasko M (1992) Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann Stat 20:1808–1827

    MathSciNet  MATH  Google Scholar 

  • Dyckerhoff R, Mozharovskyi P (2016) Exact computation of the halfspace depth. Comput Stat Data Anal 98:19–30

    Article  MathSciNet  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2008) The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Juan J, Prieto FJ (1995) A subsampling method for the computation of multivariate estimators with high breakdown point. J Comput Gr Stat 4:319–334

    Google Scholar 

  • Lange T, Mosler K, Mozharovskyi P (2014) Fast nonparametric classification based on data depth. Stat Pap 55(1):49–69

    Article  MathSciNet  Google Scholar 

  • Liu RY (1990) On a notion of data depth based on random simplices. Ann Stat 18:191–219

    Article  MathSciNet  Google Scholar 

  • Liu X, Zuo Y, Wang Q (2017) Finite sample breakdown point of Tukey’s halfspace median. Sci China Math 60(5):861–874

    Article  MathSciNet  Google Scholar 

  • Liu X, Mosler K, Mozharovskyi P (2014) Fast computation of Tukey trimmed regions in dimension \( p> 2\). arXiv:1412.5122

  • Liu X, Zuo Y (2014) Computing halfspace depth and regression depth. Commun Stat Simul Comput 43:969–985

    Article  MathSciNet  Google Scholar 

  • Miller K, Ramaswami S, Rousseeuw P, Sellarès JA, Souvaine D, Streinu I, Struyf A (2003) Efficient computation of location depth contours by methods of computational geometry. Stat Comput 13(2):153–162

    Article  MathSciNet  Google Scholar 

  • Mosler K, Lange T, Bazovkin P (2009) Computing zonoid trimmed regions of dimension \(d > 2\). Comput Stat Data Anal 53:2500–2510

    Article  MathSciNet  Google Scholar 

  • Müller C (2013) Upper and lower bounds for breakdown points. In: Becker C, Fried R, Kuhnt S (eds) Robustness and complex data structures. Festschrift in Honour of Ursula Gather. Springer, Berlin, pp 17–34

    Google Scholar 

  • Paindaveine D, Šiman M (2011) On directional multiple-output quantile regression. J Multivar Anal 102:193–392

    Article  MathSciNet  Google Scholar 

  • Paindaveine D, Šiman M (2012a) Computing multiple-output regression quantile regions. Comput Stat Data Anal 56:840–853

    Article  MathSciNet  Google Scholar 

  • Paindaveine D, Šiman M (2012b) Computing multiple-output regression quantile regions from projection quantiles. Comput Stat 27:29–49

    Article  MathSciNet  Google Scholar 

  • Rousseeuw PJ, Ruts I (1998) Constructing the bivariate Tukey median. Stat Sin 8(3):827–839

    MathSciNet  MATH  Google Scholar 

  • Ruts I, Rousseeuw PJ (1996) Computing depth contours of bivariate point clouds. Comput Stat Data Anal 23:153–168

    Article  Google Scholar 

  • Small G (1990) A survey of multidimensional medians. Int Stat Rev 58:263–277

    Article  Google Scholar 

  • Struyf A, Rousseeuw PJ (2000) High-dimensional computation of the deepest location. Comput Stat Data Anal 34(4):415–426

    Article  Google Scholar 

  • Tukey JW (1975) Mathematics and the picturing of data. In: Proceedings of the international congress of mathematicians. Canadian Mathematical Congress, Montreal, pp 523–531

  • Weber A (1909) Uber den Standort der Industrien, Tubingen. English translation by Freidrich, C. J. (1929). Alfred Weber’s Theory of Location of Industries, University of Chicago Press

  • Zuo Y (2004) Projection-based affine equivariant multivariate location estimators with the best possible finite sample breakdown point. Stat Sin 14(4):1199–1208

    MathSciNet  MATH  Google Scholar 

  • Zuo YJ, Cui HJ, He XM (2004) On the Stahel-Donoho estimators and depth-weighted means for multivariate data. Ann Stat 32:189–218

    Article  MathSciNet  Google Scholar 

  • Zuo YJ, Serfling R (2000a) General notions of statistical depth function. Ann Stat 28:461–482

    Article  MathSciNet  Google Scholar 

  • Zuo YJ, Serfling R (2000) On the performance of some robust nonparametric location measures relative to a general notion of multivariate symmetry. J Stati Plan Inference 84(1):55–79

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of the first two authors is supported by National Natural Science Foundation of China (Grant No.11601197, 11461029, 61563018), Ministry of Education Humanity Social Science Research Project of China (No.15JYC910002), China Postdoctoral Science Foundation funded project (2016M600511, 2017T100475), NSF of Jiangxi Province (No.20171ACB21030, 20161BAB201024, 20161ACB20009), and the Key Science Fund Project of Jiangxi provincial education department (No.GJJ150439, KJLD13033, KJLD14034). We thank the Editor-in-Chief Professor Müller, C., the AE, two anonymous reviewers and Yuanyuan Li for their careful reading and insightful comments, which led to many improvements in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Luo, S. & Zuo, Y. Some results on the computing of Tukey’s halfspace median. Stat Papers 61, 303–316 (2020). https://doi.org/10.1007/s00362-017-0941-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-017-0941-5

Keywords

Mathematics Subject Classification

Navigation