Skip to main content
Log in

Estimation of volatility causality in structural autoregressions with heteroskedasticity using independent component analysis

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this study, we developed a new statistical procedure to identify and estimate both the causal effects and the volatility structure in multivariate time series using structural autoregressions with heteroskedasticity (SVAR–GARCH) model. Specifically, using a recent method based on independent component analysis (ICA), we could simultaneously identify the causality and decompose the error terms into non-Gaussian independent components. We then used univariate GARCH to model the volatility of each independent component. The structure of volatility transmission along the SVAR model then was modeled using volatility impulse response function (VIRF) to independent component shocks. Simulation results were given to verify the effectiveness of the procedure. Empirically, we investigated the intraday volatility transmission effect along the US Treasury curve, based on high-frequency CME bond futures data. The result validated the general belief that intraday volatility transmission is a function of liquidity and maturity along the yield curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander C (2001) A primer on the orthogonal GARCH model. ISMA Centre, The Business School for Financial Markets, University of Reading Working paper

  • Andersen T, Davis R, Kreiss JP, Mikosch T (2009) Handbook of financial time series. Springer, New York

    MATH  Google Scholar 

  • Ayuso J, Haldane A, Restoy F (1997) Volatility transmission along the money market yield curve. Weltwirtschaftliches Archiv 133:56–75

    Article  Google Scholar 

  • Bloomberg LP (2015) Intraday prices for CME Treasury Futures, 15 Sept 2015–15 Dec 2015. Retrieved 16 Dec 2015 from Bloomberg database

  • Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econ 31:307–327

    Article  MathSciNet  Google Scholar 

  • Bollerslev T (1990) Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. Rev Econ Stat 72:498–505

    Article  Google Scholar 

  • Boscher H, Fronk EM, Pigeot I (2000) Forecasting interest rates volatilities by GARCH (1,1) and stochastic volatility models. Stat Pap 41(4):409. doi:10.1007/BF02925760

    Article  MATH  Google Scholar 

  • Chen Y, Härdle W, Spokoiny V (2010) GHICA-Risk analysis with GH distributions and independent components. J Empir Financ 17(2):255–269

    Article  Google Scholar 

  • Chen RB, Chen Y, Härdle WK (2014) TVICA-Time varying independent component analysis and its application to financial data. Comput Stat Data Anal 74:95–109

    Article  MathSciNet  Google Scholar 

  • Curto JD, Pinto JC, Tavares GN (2007) Modeling stock markets’ volatility using GARCH models with Normal, Student’s t and stable Paretian distributions. Stat Pap 50(2):311. doi:10.1007/s00362-007-0080-5

    Article  MathSciNet  MATH  Google Scholar 

  • Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4):987–1007

    Article  MathSciNet  Google Scholar 

  • Engle R (2002) Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J Bus Econ Stat 20:339–350

    Article  MathSciNet  Google Scholar 

  • Engle RF, Kroner KF (1995) Multivariate simultaneous generalized ARCH. Econ Theory 11:122–150

    Article  MathSciNet  Google Scholar 

  • García-Ferrer A, González-Prieto E, Peña D (2012) A conditionally heteroskedastic independent factor model with an application to financial stock returns. Int J Forecast 28:70–93

    Article  Google Scholar 

  • Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4):411–430

    Article  Google Scholar 

  • Hyvärinen A, Zhang K, Shimizu S, Hoyer PO (2010) Estimation of a structural vector autoregression model using non-gaussianity. J Mach Learn Res 11:1709–1731. http://dl.acm.org/citation.cfm?id=1756006.1859907

  • Kuhn H (1955) The Hungarian method for the assignment problem. Nav Res Logist Q 2(1–2):83–97

    Article  MathSciNet  Google Scholar 

  • Laurent S, Bauwens L, Rombouts JVK (2006) Multivariate GARCH models: a survey. J Appl Econ 21:79–109

    Article  MathSciNet  Google Scholar 

  • Lin WL (1997) Impulse response function for conditional volatility in GARCH models. J Bus Econ Stat 15:15–25

    MathSciNet  Google Scholar 

  • MATLAB (2015) version 8.5.0.197613 (R2015b). The MathWorks Inc., Natick

  • Perignon C, Smith DR (2007) Yield-factor volatility models. J Bank Financ 31:3125–3144

    Article  Google Scholar 

  • Shimizu S, Hoyer PO, Hyvärinen A, Kerminen A (2006) A linear non-Gaussian acyclic model for causal discovery. J Mach Learn Res 7:2003–2030. http://dl.acm.org/citation.cfm?id=1248547.1248619

  • Tsay RS (2005) Analysis of financial time series, vol 2, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Wu E, Yu P, Li W (2006) Value at risk estimation using independent component analysis-generalized autoregressive conditional heteroscedasticity (ICA-garch) models. Int J Neural Syst 16(05):371–382. doi:10.1142/S0129065706000779. http://hdl.handle.net/10722/82886

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Hoang Hai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai, T.H. Estimation of volatility causality in structural autoregressions with heteroskedasticity using independent component analysis. Stat Papers 61, 1–16 (2020). https://doi.org/10.1007/s00362-017-0919-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-017-0919-3

Keywords

Mathematics Subject Classification

Navigation