Skip to main content

Some improved estimation strategies in high-dimensional semiparametric regression models with application to riboflavin production data

A Publisher Correction to this article was published on 12 September 2019

This article has been updated

Abstract

Due to advances in technologies, modern statistical studies often encounter linear models with high-dimension, where the number of explanatory variables is larger than the sample size. Estimation in these high-dimensional problems with deterministic covariates or designs is very different from those in the case of random covariates, due to the identifiability of the high-dimensional semiparametric regression parameters. In this paper, we consider ridge estimators and propose preliminary test, shrinkage and its positive rule ridge estimators in the restricted semiparametric regression model when the errors are dependent under a multicollinear setting, in high-dimension. The asymptotic risk expressions in addition to biases are exactly derived for the estimators under study. For our proposal, a real data analysis about production of vitamin B2 and a Monté–Carlo simulation study are considered to illustrate the efficiency of the proposed estimators. In this regard, kernel smoothing and cross-validation methods for estimating the optimum ridge parameter and nonparametric function are used.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Change history

  • 12 September 2019

    Unfortunately, due to a technical error, the articles published in issues 60:2 and 60:3 received incorrect pagination. Please find here the corrected Tables of Contents. We apologize to the authors of the articles and the readers.

References

  • Akdenïz F, Tabakan G (2009) Restricted ridge estimators of the parameters in semiparametric regression model. Commun Stat Theor Methods 38:1852–1869

    MathSciNet  Article  MATH  Google Scholar 

  • Akdenïz Duran E, Härdle WK, Osipenko M (2012) Difference based ridge and Liu type estimators in semiparametric regression models. J Multivar Anal 105:164–175

    MathSciNet  Article  MATH  Google Scholar 

  • Amini M, Roozbeh M (2015) Optimal partial ridge estimation in restricted semiparametric regression models. J Multivar Anal 136:26–40

    MathSciNet  Article  MATH  Google Scholar 

  • Arashi M, Kibria BMG, Norouzirad M, Nadarajah S (2014) Improved preliminary test and Stein-Rule Liu estimators for the Ill-conditioned elliptical linear regression model. J Multivar Anal 124:53–74

    MathSciNet  Article  MATH  Google Scholar 

  • Arashi M, Saleh AKMdE, Tabatabaey SMM (2010) Estimation of parameters of parallelism model with elliptically distributed errors. Metrika 71:79–100

    MathSciNet  Article  MATH  Google Scholar 

  • Arashi M, Tabatabaey SMM (2009) Improved variance estimation under sub-space restriction. J Multivar Anal 100:1752–1760

    MathSciNet  Article  MATH  Google Scholar 

  • Arashi M, Tabatabaey SMM, Soleimani H (2012) Simple regression in view of elliptical models. Linear Algebra Appl 437:1675–1691

    MathSciNet  Article  MATH  Google Scholar 

  • Arashi M, Valizadeh T (2015) Performance of Kibria’s methods in partial linear ridge regression model. Stat Pap 56:231–246

    MathSciNet  Article  MATH  Google Scholar 

  • Bunea F (2004) Consistent covariate selection and post model selection inference in semiparametric regression. Ann Stat 32:898–927

    MathSciNet  Article  MATH  Google Scholar 

  • Bühlmann P (2013) Statistical significance in high-dimensional linear models. Bernoulli 19(4):1212–1242

    MathSciNet  Article  MATH  Google Scholar 

  • Bühlmann P, Kalisch M, Meier L (2014) High-dimensional statistics with a view towards applications in biology. Ann Rev Stat Appl 1:255–278

    Article  Google Scholar 

  • Bühlmann P, van de Geer S (2011) Statistics for high-dimensional data: methods, theory and applications. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Chandra S, Sarkar N (2016) A restricted r-k class estimator in the mixed regression model with autocorrelated disturbances. Stat Pap 57:429–449

    MathSciNet  Article  MATH  Google Scholar 

  • Fallahpour S, Ahmed SE, Doksum KA (2012) L1 penalty and shrinkage estimation in partially linear models with random coefficient autoregressive errors. Appl Stoch Model Bus Ind 28:236–250

    Article  MATH  Google Scholar 

  • Fan J, Lv J (2010) A selective overview of variable selection in high dimensional feature space. Stat Sin 20:101–148

    MathSciNet  MATH  Google Scholar 

  • Ghapani F, Rasekh AR, Babadi B (2016) The weighted ridge estimator in stochastic restricted linear measurement error models. Pap Stat. doi:10.1007/s00362-016-0786-3

  • Gibbons DG (1981) A simulation study of some ridge estimators. J Am Stat Assoc 76:131–139

    Article  MATH  Google Scholar 

  • Gisela M, Kibria BMG (2009) One some ridge regression estimators: an empirical comparisons. Commun Stat. Simul Comput 38(3):621–630

    Article  MATH  Google Scholar 

  • Härdle W, Liang H, Gao J (2000) Partially linear models. Physika Verlag, Heidelberg

    Book  MATH  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Hu H (2005) Ridge estimation of a semiparametric regression model. J Comput Appl Math 176:215–222

    MathSciNet  Article  MATH  Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for non-orthogonal problems. Technometrics 12:55–67

    Article  MATH  Google Scholar 

  • Kibria BMG (2012) Some Liu and Ridge type estimators and their properties under the ill-conditioned Gaussian linear regression model. J Stat Comput Simul 82:1–17

    MathSciNet  Article  MATH  Google Scholar 

  • Kibria BMG, Saleh AKMdE (2004) Preliminary test ridge regression estimators with student’s t errors and conflicting test-statistics. Metrika 59:105–124

    MathSciNet  Article  MATH  Google Scholar 

  • Kibria BMG, Saleh AKMdE (2011) Improving the estimators of the parameters of a probit regression model: a ridge regression approach. J Stat Plan Infererence 142(6):1421–1435

    MathSciNet  Article  MATH  Google Scholar 

  • Knight K, Fu W (2000) Asymptotic for lasso-type estimators. Ann Stat 28:1356–1378

    MathSciNet  Article  MATH  Google Scholar 

  • Li J, Palta M (2009) Bandwidth selection through cross-validation for semi-parametric varying-coefficient partially linear models. J Stat Comput Simul 79:1277–1286

    MathSciNet  Article  MATH  Google Scholar 

  • Li J, Zhang W, Wu Z (2011) Optimal zone for bandwidth selection in semiparametric models. J Nonparametric Stat 23:701–717

    MathSciNet  Article  MATH  Google Scholar 

  • McDonald GC, Galarneau DI (1975) A monte carlo evaluation of some ridge-type estimators. J Am Stat Assoc 70:407–416

    Article  MATH  Google Scholar 

  • Müller M (2000) Semiparametric extensions to generalized linear models. Habilitationsschrift, Berlin

    Google Scholar 

  • Roozbeh M (2015) Shrinkage ridge estimators in semiparametric regression models. J Multivar Anal 136:56–74

    MathSciNet  Article  MATH  Google Scholar 

  • Roozbeh M, Arashi M (2013) Feasible ridge estimator in partially linear models. J Multivar Anal 116:35–44

    MathSciNet  Article  MATH  Google Scholar 

  • Saleh AKMdE (2006) Theory of preliminary test and stein-type estimation with applications. Wiley, New York

    Book  MATH  Google Scholar 

  • Saleh AKMdE, Kibria BMG (1993) Performances of some new preliminary test ridge regression estimators and their properties. Commun Stat Ser A 22:2747–2764

    MathSciNet  Article  MATH  Google Scholar 

  • Saleh AKMdE, Kibria BMG (2011) On some ridge regression estimators: a nonparametric approach. J Nonparametric Stat 23:819–851

    MathSciNet  Article  MATH  Google Scholar 

  • Shao J, Deng X (2012) Estimation in high-dimensional linear models with deterministic design matrices. Ann Stat 40:812–831

    MathSciNet  Article  MATH  Google Scholar 

  • Wang H (2010) Forward regression for ultra-high dimensional variable screening. J Am Stat Assoc 104:1512–1524

    MathSciNet  Article  MATH  Google Scholar 

  • Wu J, Yang H (2016) More on the unbiased ridge regression estimation. Stat Pap 57:31–42

    MathSciNet  Article  MATH  Google Scholar 

  • Yuzbashi, B. and Ahmed, S.E. (2015). Shrinkage ridge regression estimators in high-dimensional linear models. In: Proceedings of the 9th international conference on management science and engineering management. doi:10.1007/978-3-662-47241-5_67

  • Zhang CH, Huang J (2008) The sparsity and bias of the LASSO selection in high-dimensional linear regression. Ann Stat 36:1567–1594

    MathSciNet  Article  MATH  Google Scholar 

  • Zhang C, Li J, Menga J (2008) On Stein’s lemma, dependent covariates and functional monotonicity in multi-dimensional modeling. J Multivar Anal 99:2285–2303

    MathSciNet  Article  MATH  Google Scholar 

  • Zhong Z, Yang Hu (2007) Ridge estimation to the restricted linear model. Commun Stat Theor Methods 36(11):2099–2115

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous reviewers for their valuable comments and suggestions on the earlier version of this article which significantly improved the presentation. First author’s research is supported by Shahrood University of Technology (Grant No. 23088), Iran. The second author’s research is supported in part by a grant 94811069 from the Iran National Science Foundation (INSF) and Research Council of Semnan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Roozbeh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arashi, M., Roozbeh, M. Some improved estimation strategies in high-dimensional semiparametric regression models with application to riboflavin production data. Stat Papers 60, 667–686 (2019). https://doi.org/10.1007/s00362-016-0843-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-016-0843-y

Keywords

  • Generalized restricted ridge estimator
  • High-dimension
  • Kernel smoothing
  • Linear restriction
  • Multicollinearity
  • Semiparametric regression model
  • Shrinkage estimator
  • Sparsity

Mathematics Subject Classification

  • Primary: 62G08
  • 62J05
  • Secondary: 62J07
  • 62G20