Appendix 1: Proof of Theorem 1
Proof
Let \(\Phi (B) = 1 - \phi _1B - \cdots - \phi _pB^p\) the autoregressive polynomial, \(\Theta (B) = 1 + \theta _1B + \cdots + \theta _qB^q\) the moving averages polynomial and \(B^ky_t=y_{t-k}\) the lag operator and \(\Psi (B) =\sum \nolimits _{i=0}^{\infty }\psi _iB^i=\Theta (B)\Phi (B)^{-1}\), \(\psi _0=1\) and assuming that \(\Phi (B)\) is invertible. The SYMARMA model can be rewritten as
$$\begin{aligned} \Phi (B)(y_t-\mathbf{x}_{t}^{\top }\varvec{\beta }) = \Theta (B)r_t \end{aligned}$$
and, since \(\Phi (B)\) is invertible,
$$\begin{aligned} y_t = \mathbf{x}_{t}^{\top }\varvec{\beta }+ \Psi (B)r_t, \end{aligned}$$
Therefore, assuming that \(\Phi (B)\) is invertible, the marginal mean of \(y_t\) of the SYMARMA model is given by
$$\begin{aligned} \mathrm {E}(y_t) = \mathbf{x}_t^{\top }\varvec{\beta }. \end{aligned}$$
\(\square \)
Appendix 2: Proof of Theorem 2
Proof
Let \(Y_t = \mu _t + r_t\) where \(r_t's\) are uncorrelated residuals with mean zero. We have
$$\begin{aligned} \mathrm {Var}(r_t)= & {} \mathrm {E}(r_t^2) = \mathrm {E}(\mathrm {E}(r_t^2|\mathrm {\mathcal{F}_{t-1}})) = \mathrm {E}(\mathrm {Var}(r_t|\mathrm {\mathcal{F}_{t-1}})) = \mathrm {E}(\mathrm {Var}(Y_t - \mu _t|\mathrm {\mathcal{F}_{t-1}}))\\= & {} \mathrm {E}(\mathrm {Var}(y_t|\mathrm {\mathcal{F}_{t-1}})) = \mathrm {E}(\xi \varphi ) = \xi \varphi . \end{aligned}$$
Note that \(\mu _t\) given in (2) is \(\mathcal{F}_{t-1}\)-measurable. Therefore, the marginal variance of \(Y_t\), \(\mathrm {Var}(Y_t)\), is given by
$$\begin{aligned} \mathrm {Var}(Y_t)= & {} \mathrm {Var}(\mathbf{x}_{t}^{\top }\varvec{\beta }+ \Psi (B)r_t) = \mathrm {Var}(\Psi (B)r_t) = \mathrm {E}[(\Psi (B)r_t)^2] \\= & {} \sum \limits _{i=0}^\infty \sum \limits _{j=0}^\infty \psi _i\psi _j\mathrm {E}(r_{t-i}r_{t-j}) = \sum \limits _{i=0}^\infty \psi _i^2\mathrm {E}(r_{t-i}^2) = \sum \limits _{i=0}^\infty \psi _i^2\mathrm {Var}(r_{t-i})\\= & {} \xi \varphi \sum \limits _{i=0}^\infty \psi _i^2. \end{aligned}$$
\(\square \)
Appendix 3: Proof of Theorem 3
Proof
By Theorem 1 and 2 we have
$$\begin{aligned} \mathrm {E}(Y_t) = x_t^\top \mathbf{\beta } \ \ \mathrm {e} \ \ \ \mathrm {Var}(Y_t) = \xi \varphi \sum _{i=0}^{\infty }\psi _i^2.\quad \mathrm{And} \end{aligned}$$
$$\begin{aligned} \mathrm {Cov}(Y_t,Y_{t-k})= & {} \mathrm {Cov}(\mathbf{x}_{t}^{\top }\varvec{\beta }+ \sum _{i=0}^{\infty }\psi _ir_{t-i}, \mathbf{x}_{t-k}^{\top }\varvec{\beta }+ \sum _{i=0}^{\infty }\psi _ir_{t-k-i}) \\= & {} \mathrm {Cov}(\psi _0r_t + \psi _1r_{t-1} + \cdots , \psi _0r_{t-k} + \psi _1r_{t-k-1} + \cdots )\\= & {} \mathrm {Var}(r_t)\sum _{i=0}^{\infty }\psi _i\psi _{i+k} = \xi \varphi \sum _{i=0}^{\infty }\psi _i\psi _{i+k} \end{aligned}$$
where \(\Psi _0=1\).
$$\begin{aligned} \mathrm {Corr}(Y_t,Y_{t-k})= & {} \dfrac{\mathrm {Cov}(Y_t,Y_{t-k})}{\sqrt{\mathrm {Cov}(Y_t,Y_{t})\mathrm {Cov}(Y_{t-k},Y_{t-k})}} = \dfrac{\xi \varphi \sum _{i=0}^{\infty }\psi _i\Psi _{i+k}}{\xi \varphi \sum _{i=0}^{\infty }\psi _i^2} \\= & {} \dfrac{\sum _{i=0}^{\infty }\psi _i\psi _{i+k}}{\sum _{i=0}^{\infty }\psi _i^2}. \end{aligned}$$
\(\square \)
Expected conditional Fisher information matrix
The elements of the expected conditional Fisher information matrix, \(\mathbf{K}\), are obtained from expression
$$\begin{aligned} \mathbf{K}_{\omega _r\omega _s} = -\mathrm {E}\left[ \dfrac{\partial ^2 \ell ({\varvec{\delta }},\varphi )}{\partial \omega _r\partial \omega _s}\left| \mathcal{F}_{t-1}\right. \right] = \mathrm {E}\left[ \dfrac{\partial \ell ({\varvec{\delta }},\varphi )}{\partial \omega _r}\dfrac{\partial \ell ({\varvec{\delta }},\varphi )}{\partial \omega _s}\left| \mathcal{F}_{t-1}\right. \right] , \end{aligned}$$
where \(\omega _r\) and \(\omega _s\) are model parameters and \(\ell \) is the logarithm of the conditional likelihood function.
Under suitable regularity conditions
$$\begin{aligned} \mathrm {E}\left( \dfrac{\partial \ell _t({\varvec{\delta }},\varphi )}{\partial \mu _t}\left| \right. \mathcal{F}_{t-1}\right)= & {} \mathrm {E}\left( \dfrac{\partial \mathrm {log}f(y_t|\mathcal{F}_{t-1})}{\partial \mu _t}\right) \nonumber \\= & {} \displaystyle \int _{-\infty }^{\infty }\dfrac{\partial \mathrm {log}f(y_t|\mathcal{F}_{t-1})}{\partial \mu _t}f(y_t|\mathcal{F}_{t-1})d\mu _t\nonumber \\= & {} \displaystyle \int _{-\infty }^{\infty }\left( \dfrac{1}{f(y_t|\mathcal{F}_{t-1})}\dfrac{\partial f(y_t|\mathcal{F}_{t-1})}{\partial \mu _t}\right) f(y_t|\mathcal{F}_{t-1})d\mu _t\nonumber \\= & {} \displaystyle \int _{-\infty }^{\infty }\dfrac{\partial f(y_t|\mathcal{F}_{t-1})}{\partial \mu _t}d\mu _t = \dfrac{\partial }{\partial \mu _t}\displaystyle \int _{-\infty }^{\infty }f(y_t|\mathcal{F}_{t-1})d\mu _t = 0.\nonumber \\ \end{aligned}$$
(10)
From some algebraic manipulations, we also obtain that
$$\begin{aligned} \dfrac{\partial \ell _t({\varvec{\delta }},\varphi )}{\partial \mu _t} = -\dfrac{2}{\sqrt{\varphi }}W_g(u_t)z_t, \end{aligned}$$
with \(z_t = \sqrt{u_t} = (y_t-\mu _t)/\sqrt{\varphi }\). Therefore, using the results in (10), we have
$$\begin{aligned} \mathrm {E}\left( W_g(u_t)z_t|\mathcal{F}_{t-1}\right) = 0. \end{aligned}$$
(11)
Furthermore, the expressions
$$\begin{aligned} \dfrac{\partial \mu _t}{\partial \beta _l} = x_{tl} - \sum \limits _{i=1}^{p}\phi _ix_{(t-i)l}, \qquad \ \dfrac{\partial \mu _t}{\partial \phi _i} = y_{t-i} - \mathbf{x}^\top _{t-i}\varvec{\beta }\qquad \ \mathrm {and} \qquad \ \dfrac{\partial \mu _t}{\partial \theta _j} = y_{t-j} - \mu _{t-j} \end{aligned}$$
(12)
are measurable with respect to \(\mathcal{F}_{t-1}\).
The \(\mathbf{K}_{{\varvec{\delta }}{\varvec{\delta }}}\) matrix elements
$$\begin{aligned}&\mathrm {E}\left( \dfrac{\partial \ell _t({\varvec{\delta }},\varphi )}{\partial \delta _i}\dfrac{\partial \ell _t({\varvec{\delta }},\varphi )}{\partial \delta _j}|\mathcal{F}_{t-1}\right) \\&\quad = \mathrm {E}\left[ \left( \dfrac{-2W_g(u_t)}{\sqrt{\varphi }}\dfrac{\partial \mu _t}{\partial \delta _i}z_t\right) \left( \dfrac{-2W_g(u_t)}{\sqrt{\varphi }}\dfrac{\partial \mu _t}{\partial \delta _j}z_t\right) |\mathcal{F}_{t-1}\right] \\&\quad = \dfrac{4}{\varphi }\mathrm {E}\left[ W^2_g(u_t)z_t^2\dfrac{\partial \mu _t}{\partial \delta _i}\dfrac{\partial \mu _t}{\partial \delta _j} |\mathcal{F}_{t-1}\right] \\&\quad = \dfrac{4}{\varphi }\mathrm {E}\left[ W^2_g(u_t)z_t^2|\mathcal{F}_{t-1}\right] \dfrac{\partial \mu _t}{\partial \delta _i}\dfrac{\partial \mu _t}{\partial \delta _j}\\&\quad = \dfrac{4}{\varphi }d_{g}\dfrac{\partial \mu _t}{\partial \delta _i}\dfrac{\partial \mu _t}{\partial \delta _j}, \end{aligned}$$
with \(d_{g} = \mathrm {E}\left[ W^2_g(u_t)z_t^2|\mathcal{F}_{t-1}\right] \). So, \(d_{g} = \mathrm {E}\left[ W^2_g(U^2)U^2|\mathcal{F}_{t-1}\right] \) with \(U \sim S(0,1,g)\).
From the results presented in (12) one can easily find the expressions for the elements of \(\mathbf{K}_{{\varvec{\delta }}{\varvec{\delta }}}\).
The \(\mathbf{K}_{\varphi \varphi }\) matrix elements
$$\begin{aligned} \mathrm {E}\left( \dfrac{\partial \ell _t({\varvec{\delta }},\varphi )}{\partial \varphi }\dfrac{\partial \ell _t({\varvec{\delta }},\varphi )}{\partial \varphi }|\mathcal{F}_{t-1}\right)= & {} \mathrm {E}\left[ \left( -\dfrac{1}{2\varphi } - \dfrac{W_g(u_t)}{\varphi }u_t\right) \left( -\dfrac{1}{2\varphi } - \dfrac{W_g(u_t)}{\varphi }u_t\right) |\mathcal{F}_{t-1}\right] \\= & {} \mathrm {E}\left[ \dfrac{1}{4\varphi ^2} + \dfrac{W_g(u_t)u_t}{\varphi ^2} + \dfrac{W^2_g(u_t)u_t^2}{\varphi ^2} |\mathcal{F}_{t-1}\right] \\= & {} \dfrac{1}{4\varphi ^2} + \dfrac{1}{\varphi ^2}\mathrm {E}\left[ W_g(u_t)u_t|\mathcal{F}_{t-1}\right] + \dfrac{1}{\varphi ^2}\mathrm {E}\left[ W^2_g(u_t)u_t^2|\mathcal{F}_{t-1}\right] \\= & {} \dfrac{1}{4\varphi ^2} + \dfrac{1}{\varphi ^2}\left( -\dfrac{1}{2}\right) + \dfrac{1}{\varphi ^2}f_{g}\\= & {} \dfrac{1}{\varphi ^2}f_{g} - \dfrac{1}{4\varphi ^2} = \dfrac{1}{4\varphi ^2}\left( 4f_{g}-1\right) , \end{aligned}$$
with \(f_{g} = \mathrm {E}\left[ W^2_g(u_t)u_t^2|\mathcal{F}_{t-1}\right] \). So, \(f_{g} = \mathrm {E}\left[ W^2_g(U^2)U^4|\mathcal{F}_{t-1}\right] \) with \(U \sim S(0,1,g)\). From Fang et al. (1990) (p. 94). we have \(\mathrm {E}\left[ W_g(u_t)u_t|\mathcal{F}_{t-1}\right] = -1/2\). Therefore,
$$\begin{aligned} \mathbf{K}_{\varphi \varphi }= & {} \sum \limits _{t=m+1}^n\dfrac{1}{4\varphi ^2}\left( 4f_{g}-1\right) = \dfrac{(n-m)}{4\varphi ^2}\left( 4f_{g}-1\right) . \end{aligned}$$
\(\mathbf{K}_{{\varvec{\delta }}\varphi }\) matrix
$$\begin{aligned}&\mathrm {E}\left( \dfrac{\partial \ell _t({\varvec{\delta }},\varphi )}{\partial \delta _i}\dfrac{\partial \ell _t({\varvec{\delta }},\varphi )}{\partial \varphi }|\mathcal{F}_{t-1}\right) \\&\quad = \mathrm {E}\left[ \left( \dfrac{-2W_g(u_t)}{\sqrt{\varphi }}\dfrac{\partial \mu _t}{\partial \delta _i}z_t\right) \left( -\dfrac{1}{2\varphi } - \dfrac{W_g(u_t)}{\varphi }u_t\right) |\mathcal{F}_{t-1}\right] \\&\quad = \mathrm {E}\left[ \dfrac{W_g(u_t)}{\varphi \sqrt{\varphi }}z_t|\mathcal{F}_{t-1}\right] \dfrac{\partial \mu _t}{\partial \delta _i} + \mathrm {E}\left[ \dfrac{2W^2_g(u_t)}{\varphi \sqrt{\varphi }}z_tu_t|\mathcal{F}_{t-1}\right] \dfrac{\partial \mu _t}{\partial \delta _i}\\&\quad = \dfrac{1}{\varphi \sqrt{\varphi }}\left\{ \mathrm {E}\left[ W_g(u_t)z_t|\mathcal{F}_{t-1}\right] + 2\mathrm {E}\left[ W^2_g(u_t)z_tu_t|\mathcal{F}_{t-1}\right] \right\} \dfrac{\partial \mu _t}{\partial \delta _i}\\&\quad = 0. \end{aligned}$$
From Fang et al. (1990) (p. 94) we have \(\mathrm {E}\left[ W^2_g(u_t)z_tu_t|\mathcal{F}_{t-1}\right] = 0\) and in addition, \(\mathrm {E}\left[ W_g(u_t)z_t|\mathcal{F}_{t-1}\right] =0\) because (11).