Nonparametric relative error regression for spatial random variables
Regular Article
First Online:
Received:
Revised:
Abstract
Let \(\displaystyle Z_{\mathbf {i}}=\left( X_{\mathbf {i}},\ Y_{\mathbf {i}}\right) _{\mathbf {i}\in \mathbb {N}^{N}\, N \ge 1}\), be a \( \mathbb {R}^d\times \mathbb {R}\)-valued measurable strictly stationary spatial process. We consider the problem of estimating the regression function of \(Y_{\mathbf {i}}\) given \(X_{\mathbf {i}}\). We construct an alternative kernel estimate of the regression function based on the minimization of the mean squared relative error. Under some general mixing assumptions, the almost complete consistency and the asymptotic normality of this estimator are obtained. Its finite-sample performance is compared with a standard kernel regression estimator via a Monte Carlo study and real data example.
Keywords
Kernel method Relative error Non-parametric estimation Associated variableMathematics Subject Classification
62G20 62G08References
- Bernhard FA, Stahlecker P (2003) Relative squared error prediction in the generalized linear regression model. Stat Pap 44:107–115MATHCrossRefGoogle Scholar
- Biau G, Cadre B (2004) Nonparametric spatial prediction. Stat Inference Stoch Process 7:327–349MATHMathSciNetCrossRefGoogle Scholar
- Bobbia M, Misiti M, Misiti Y, Poggi JM, Portier B (2015) Spatial outlier detection in the PM10 monitoring network of Normandy. Atmos Pollut Res 6:476–483CrossRefGoogle Scholar
- Carbon M, Tran LT, Wu B (1997) Kernel density estimation for random fields. Stat Probab Lett 36:115–125MATHMathSciNetCrossRefGoogle Scholar
- Carbon M, Francq C, Tran LT (2007) Kernel regression estimation for random fields. J Stat Plan Inference 137:778–798MATHMathSciNetCrossRefGoogle Scholar
- Cressie NA (1993) Statistics for spatial data. Wiley, New YorkGoogle Scholar
- Dabo-Niang S, Thiam B (2010) Robust quantile estimation and prediction for spatial processes. Stat Probab Lett 80:1447–1458MATHMathSciNetCrossRefGoogle Scholar
- Dabo-Niang S, Yao AF (2007) Kernel regression estimation for continuous spatial processes. Math Methods Stat 16:1–20MathSciNetCrossRefGoogle Scholar
- Dabo-Niang S, Ould-Abdi S, Ould-Abdi A, Diop A (2014) Consistency of a nonparametric conditional mode estimator for random fields. Stat Methods Appl 23:1–39MathSciNetCrossRefGoogle Scholar
- Dabo-Niang S, Yao A, Pischedda L, Cuny P, Gilbert F (2009) Spatial kernel mode estimation for functional random, with application to bioturbation problem. Stoch Environ Res Risk Assess 24:487–497CrossRefGoogle Scholar
- Diggle P, Ribeiro PJ (2007) Model-based geostatistics. Springer, New YorkMATHGoogle Scholar
- Doukhan P (1994) Mixing: properties and examples. Lecture Notes in Statistics, vol 85. Springer- Verlag, New YorkGoogle Scholar
- El Machkouri M, Stoica R (2010) Asymptotic normality of kernel estimates in a regression model for random fields. J Nonparametric Stat 22:955–971MATHCrossRefGoogle Scholar
- Filzmoser P, Ruiz-Gazen A, Thomas-Agnan C (2014) Identification of local multivariate outliers. Stat Pap 55:29–47MATHMathSciNetCrossRefGoogle Scholar
- Gheriballah A, Laksaci A, Rouane R (2010) Robust nonparametric estimation for spatial regression. J Stat Plan Inference 140:1656–1670MATHMathSciNetCrossRefGoogle Scholar
- Guyon X (1987) Estimation d’un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas Markovien. In: Proceedings of the sixth Franco-Belgian meeting of statisticiansGoogle Scholar
- Hallin M, Lu Z, Yu K (2009) Local linear spatial quantile regression. Bernoulli 15:659–686MATHMathSciNetCrossRefGoogle Scholar
- Jones MC, Park H, Shinb K, Vines SK, Jeong SO (2008) Relative error prediction via kernel regression smoothers. J Stat Plan Inference 138:2887–2898MATHCrossRefGoogle Scholar
- Li J, Tran LT (2009) Nonparametric estimation of conditional expectation. J Stat Plan Inference 139:164–175MATHMathSciNetCrossRefGoogle Scholar
- Liu X, Lu CT, Chen F (2010) Spatial outlier detection: random walk based approaches. In: Proceedings of the 18th ACM SIGSPATIAL international conference on advances in geographic information systems (ACM GIS), San Jose, CAGoogle Scholar
- Lu Z, Chen X (2004) Spatial kernel regression: weak consistency. Stat Probab Lett 68:125–136MATHCrossRefGoogle Scholar
- Martnez J, Saavedra J, Garca-Nieto PJ, Pieiro JI, Iglesias C, Taboada J, Sancho J, Pastor J (2014) Air quality parameters outliers detection using functional data analysis in the Langreo urban area (Northern Spain). Appl Math Comput 241:1–10MathSciNetCrossRefGoogle Scholar
- Narula SC, Wellington JF (1977) Prediction, linear regression and the minimum sum of relative errors. Technometrics 19:185–190MATHCrossRefGoogle Scholar
- Omidi M, Mohammadzadeh M (2015) A new method to build spatio-temporal covariance functions: analysis of ozone data. Stat Pap. doi:10.1007/s00362-015-0674-2
- Robinson PM (2011) Asymptotic theory for nonparametric regression with spatial data. J Econom 165:5–19CrossRefGoogle Scholar
- Shen VY, Yu T, Thebaut SM (1985) Identifying error-prone softwarean empirical study. IEEE Trans Softw Eng 11:317–324CrossRefGoogle Scholar
- Tran LT (1990) Kernel density estimation on random fields. J Multivar Anal 34:37–53MATHCrossRefGoogle Scholar
- Volker S (2014) Stochastic geometry, spatial statistics and random fields: models and algorithms. Lecture Notes in Mathematics, vol 2120. Springer, New YorkGoogle Scholar
- Xu R, Wang J (2008) \(L_1\)- estimation for spatial nonparametric regression. J Nonparametric Stat 20:523–537MATHCrossRefGoogle Scholar
- Yang Y, Ye F (2013) General relative error criterion and M-estimation. Front Math China 8:695–715MATHMathSciNetCrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2015