A conditional count model for repeated count data and its application to GEE approach

Abstract

In this article, a conditional model is proposed for modeling longitudinal count data. The joint density is disintegrated into the marginal and conditional densities according to the multiplication rule. It allows both positive and negative correlation among variables, which most multivariate count models do not possess. To show the efficiency of the proposed model for count data, we have applied to the generalized estimating equations and the inverse Fisher information matrix is compared with the covariance matrix from estimating equations. A simulation experiment is displayed and an application of the model to divorce data is presented. In addition, a comparison of conditional model and bivariate Poisson model proposed by Kocherlakota and Kocherlakota has shown using simulated data.

This is a preview of subscription content, log in to check access.

References

  1. Agresti A (2002) Categorical data analysis, 2nd edn. Wiley, New York

    Google Scholar 

  2. Arnold BC (1987) Bivariate distributions with Pareto conditionals. Stat Probab Lett 5:263–266

    MathSciNet  Article  MATH  Google Scholar 

  3. Arnold BC, Strauss D (1988) Bivariate distributions with exponential conditionals. J Am Stat Assoc 83:522–527

    MathSciNet  Article  MATH  Google Scholar 

  4. Berkhout P, Plug E (2004) A bivariate Poisson count data model using conditional probabilities. StatisticaNeerlandica 58:349–364

    MathSciNet  MATH  Google Scholar 

  5. Charalambides CHA, Papageorgiou H (1981) Bivariate Poisson binomial distributions. Biom J 28(5):437–450

    MathSciNet  Article  MATH  Google Scholar 

  6. Cordeiro GM, Rodrigues J, de Castro M (2012) The exponential COM-Poisson distribution. Stat Papers 53:653–664

    MathSciNet  Article  MATH  Google Scholar 

  7. Crowder M (1995) On the use of a working correlation matrix in using generalized linear models for repeated measures. Biometrika 82:407–410

    Article  MATH  Google Scholar 

  8. Deshmukh SR, Kasture MS (2002) Bivariate distribution with truncated Poisson marginal distributions. Commun Stat Theory Methods 31(4):527–534

    MathSciNet  Article  MATH  Google Scholar 

  9. Diggle PJ, Heagerty P, Liang K-Y, Zeger SL (2002) Analysis of longitudinal data, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  10. Gourieroux C, Monfort A, Trognon A (1984) Pseudo maximum likelihood methods: theory. Econometrica 52:681–700

    MathSciNet  Article  MATH  Google Scholar 

  11. Health and Retirement Study (Wave [1-7]/Year [1992–2004]), Public use dataset, produced and distributed by the University of Michigan with funding from National Institute on Aging. Ann. Arbor, MI

  12. Huang ML, Fung KY (1993) The D compound Poisson distribution. Stat Papers 34:319–338

    MathSciNet  Article  MATH  Google Scholar 

  13. Huang ML, Fung KY (1997) On moments and cumulants of the D compound Poisson distribution. Stat Papers 38:357–361

    MathSciNet  Article  MATH  Google Scholar 

  14. Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, London

    Google Scholar 

  15. Johnson NL, Kotz S (1969) Distributions in statistics: discrete distributions. Wiley, New York

    Google Scholar 

  16. Jung CJ, Winkelmann R (1993) Two aspects of labor mobility: a bivariate Poisson regression approach. Empir Econ 18:543–556

    Article  Google Scholar 

  17. Jupp PE, Mardia KV (1980) A general correlation coefficient for directional data and related regression problems. Biometrika 67:163–173

    MathSciNet  Article  MATH  Google Scholar 

  18. Kocherlakota S, Kocherlakota K (2001) Regression in the bivariate Poisson distribution. Commun Stat Theory Methods 30(5):815–825

    MathSciNet  Article  MATH  Google Scholar 

  19. Kocherlatoka S, Kocherlakota K (1993) Bivariate discrete distributions. Marcel Dekker, New York

    Google Scholar 

  20. Liang K-Y, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    MathSciNet  Article  MATH  Google Scholar 

  21. Lindsey JK, Lambert P (1998) On the appropriateness of marginal models for repeated measures in clinical trials. Stat Med 17:447–469

    Article  Google Scholar 

  22. Masarotto G, Varin C (2012) Gaussian copula marginal regression. Electron J Stat 6:1517–1549

    MathSciNet  Article  MATH  Google Scholar 

  23. McCullagh P (1983) Quailikelihood function. Ann Stat 11:59–67

    Article  Google Scholar 

  24. Mckenzie E (1988) Some ARMA models for dependent sequences of Poisson counts. Adv Appl Probab 20:822–835

    MathSciNet  Article  MATH  Google Scholar 

  25. Minka TP, Shmueli G, Kadane JB, Borle S, Boatwright P (2003) Computing with the COM- Poisson distribution. Technical report 776, Department of Statistics, Carnegie Mellon University. http://www.stat.cmu.edu/tr/tr776/tr776.html

  26. Munkin MK, Trevedi PK (1999) Simulated maximum likelihood estimation of multivariate mixed-Poisson models with applications. Econom J 2:29–48

    Article  Google Scholar 

  27. Nikoloulopoulos AK (2015) Efficient estimation of high-dimensional multivariate normal copula models with discrete spatial responses. Stoch Environ Res Risk Assess:1–13 doi:10.1007/s00477-015-1060-2

  28. Nikoloulopoulos AK, Joe H, Chaganty NR (2011) Weighted scores method for regression models with dependent data. Biostatistics 12:653–665

    Article  MATH  Google Scholar 

  29. Park Y, Oh CW (1997) Some asymptotic properties in INAR (1) processes with Poisson marginals. Stat Papers 38:287–302

    MathSciNet  Article  MATH  Google Scholar 

  30. Shmueli G, Minka TP, Kadane JB, Borle S, Boatwright P (2005) A useful distribution for fitting discrete data: revival of the Conway- Maxwell- Poisson distribution. Appl Stat 54:127–142

    MathSciNet  MATH  Google Scholar 

  31. Song PX-K (2000) Multivariate dispersion models generated from Gaussian Copula. Scand J Stat 27:305–320

    MathSciNet  Article  MATH  Google Scholar 

  32. Sutradhar BC, Das K (1999) On the efficiency of regression estimator using generalized linear models for longitudinal data. Biometrika 86:459–465

    MathSciNet  Article  MATH  Google Scholar 

  33. Zimmer DM, Trivedi PK (2006) Using trivariate copulas to model sample selection and treatment effects. J Bus Econ Stat 24(1):63–76

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the HRS (Health and Retirement Study) which is sponsored by the National Institute of Aging (Grant Number NIA U01AG09740) and conducted by the University of Michigan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajib Dey.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dey, R., Islam, M.A. A conditional count model for repeated count data and its application to GEE approach. Stat Papers 58, 485–504 (2017). https://doi.org/10.1007/s00362-015-0708-9

Download citation

Keywords

  • Count data
  • Generalized estimating equations
  • Conditional probability