Skip to main content
Log in

A wavelet-based hybrid approach to estimate variance function in heteroscedastic regression models

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We propose a wavelet-based hybrid approach to estimate the variance function in a nonparametric heteroscedastic fixed design regression model. A data-driven estimator is constructed by applying wavelet thresholding along with the technique of sparse representation to the difference-based initial estimates. We prove the convergence of the proposed estimator. The numerical results show that the proposed estimator performs better than the existing variance estimation procedures in the mean square sense over a range of smoothness classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. (i) A vector in \(\mathbb {R}^n\) is said to be \(k\)-sparse iff it contains at most \(k\) nonzero components where \(k<<n\). (ii) An estimate is said to be ‘sparsely noisy’ if a very minimum percentage of noise only is present in the estimate and that too occurs sparsely.

References

  • Aharon M, Elad M, Bruckstein A (2006) On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them. Linear Algebr Appl 416:48–67

    Article  MathSciNet  MATH  Google Scholar 

  • Antoniadis A (2007) Wavelet methods in statistics: some recent developments and their applications. Stat Surv 1:16–55

    Article  MathSciNet  MATH  Google Scholar 

  • Antoniadis A, Lavergne C (1994) Variance function estimation in regression by wavelet methods. Wavelets and Statistics, Lecture Notes in Statistics, Springer-Verlag, New York, pp 31–42

    Google Scholar 

  • Antoniadis A, Sapatina T (2001) Wavelet estimators in nonparametric regression: a comparative simulation study. J Stat Softw 6:1–83

    Google Scholar 

  • Averkamp R, Houdre C (2003) Wavelet thresholding for non necessarily Gaussian noise: idealism. Ann Stat 31:110–151

    Article  MathSciNet  MATH  Google Scholar 

  • Berger J (1976) Minimax estimation of a multivariate normal mean under arbitrary quadratic loss. J Multivar Anal 4:642–648

    MATH  Google Scholar 

  • Box GEP (1988) Signal to noise ratios, performance criteria and transformation. Technometrics 30(1):1–17

    Article  MathSciNet  MATH  Google Scholar 

  • Brown LD, Gans N, Mandelbaum A, Sakov A, Shen H, Zeltyn S, Zhao L (2005) Statistical analysis of a telephone call center:a queueingscience perspective. J Am Stat Assoc 100:36–50

    Article  MathSciNet  MATH  Google Scholar 

  • Brown LD, Levine M (2007) Variance estimation in nonparametric regression via the difference sequence method. Ann Stat 35:2219–2232

    Article  MathSciNet  MATH  Google Scholar 

  • Cai T, Wang L (2004) Adaptive variance function estimation in heteroscedastic nonparametric regression. Ann Stat 35:2025–2054

    MathSciNet  Google Scholar 

  • Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev 43(1):129–159

    Article  MathSciNet  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Donoho DL, Johnstone IM (1994) Ideal spatial adaptation via wavelet shrinkage. Biometrka 81:425–455

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL, Huo X (1999) Uncertainty principles and ideal atomic decomposition, technical report. IEEE Trans Inform Theory 47(7):2845–2862

    Article  MathSciNet  Google Scholar 

  • Frazier MW (1999) An introduction to wavelets through linear algebra. Springer Verlag, New York

    MATH  Google Scholar 

  • Hall P, Kay PJW, Titterington DM (1990) Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika 77:521–528

    Article  MathSciNet  Google Scholar 

  • Härdle W, Tsybakov A (1997) Local polynomial estimators of the volatility function in nonparametric autoregression. J Econom 81:223–242

    Article  MATH  Google Scholar 

  • Mallat SG (1989) Multiresolution approximations and wavelet orthonormal bases of \( L^2(\Re )\). Trans Am Math Soc 315:69–87

    MathSciNet  MATH  Google Scholar 

  • Mallat SG, Zhang Z (1993) Matching pursuits with time frequency dictionaries. IEEE Trans Signal Process 41(12):3397–3415

    Article  MATH  Google Scholar 

  • Müller HG, Stadtmüller U (1987) Estimation of heteroscedasticity in regression analysis. Ann Stat 15:610–625

    Article  MATH  Google Scholar 

  • Palanisamy T, Ravichandran J (2014) Estimation of variance function in heteroscedastic regression models by generalized coiflets. Commun Stat 43(10):2213–2224

    Article  MathSciNet  MATH  Google Scholar 

  • Shen S, Mei C (2009) Estimation of the variance function in heteroscedastic linear regression models. Commun Stat Theory Methods 38(7):1098–1112

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We wish to thank the Associate Editor and two referees for their constructive comments which led to an improvement in some of our earlier results and also helped in improving the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ravichandran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanisamy, T., Ravichandran, J. A wavelet-based hybrid approach to estimate variance function in heteroscedastic regression models. Stat Papers 56, 911–932 (2015). https://doi.org/10.1007/s00362-014-0614-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-014-0614-6

Keywords

Navigation