Skip to main content
Log in

Two-sample Kolmogorov–Smirnov fuzzy test for fuzzy random variables

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, a new method is proposed for developing two-sample Kolmogorov–Smirnov test for the case when the data are observations of fuzzy random variables, and the hypotheses are imprecise rather than crisp. In this approach, first a new notion of fuzzy random variables is introduced. Then, the \(\alpha \)-pessimistic values of the imprecise observations are transacted to extend the usual method of two-sample Kolmogorov–Smirnov test. To do this, the concepts of fuzzy cumulative distribution function and fuzzy empirical cumulative distribution function are defined. We also develop a well-known large sample property of the classical empirical cumulative distribution function for fuzzy empirical cumulative distribution function. In addition, the Kolmogorov–Smirnov two-sample test statistic is extended for fuzzy random variables. After that, the method of computing the so-called fuzzy \(p\) value is introduced to evaluate the imprecise hypotheses of interest. In this regard, applying an index called credibility degree, the obtained fuzzy \(p\) value and the crisp significance level are compared. The result provides a fuzzy test function which leads to some degrees to accept or to reject the null hypothesis. Some numerical examples are provided throughout the paper clarifying the discussions made in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriaenssens V, De Baets B, Goethals PLM, De Pauw N (2004) Fuzzy rule-based models for decision support in ecosystem management. Sci Total Environ 319:1–12

    Article  Google Scholar 

  • Bandemer H, Näther W (1992) Fuzzy data analysis. Kluwer Academic Publisher, Dordrecht

    Book  MATH  Google Scholar 

  • Bertoluzza C, Gil MÁ, Ralescu DA (2002) Statistical modeling. Analysis and management of fuzzy data. Academic Press, New York

    Book  MATH  Google Scholar 

  • Bethea RM, Rhinehart RR (1991) Applied engineering statistics. Marcel Dekker, New York

    MATH  Google Scholar 

  • Buckley JJ (2006) Fuzzy statistics. Studies in fuzziness and soft computing. Springer, Berlin

    Google Scholar 

  • Chachi J, Taheri SM (2011) Fuzzy confidence intervals for mean of Gaussian fuzzy random variables. Expert Syst Appl 38:5240–5244

    Article  Google Scholar 

  • Chachi J, Taheri SM, Viertl R (2012) Testing statistical hypotheses based on fuzzy confidence intervals. Austrian J Stat 41:267–286

    Google Scholar 

  • Colubi A (2009) Statistical inference about the means of fuzzy random variables: applications to the analysis of fuzzy- and real-valued data. Fuzzy Sets Syst 160:344–356

    Article  MATH  MathSciNet  Google Scholar 

  • Colubi A, Coppi R, D’Urso P, Gil MÁ (2007) Statistics with fuzzy random variables. METRON Int J Stat LXV:277–303

    Google Scholar 

  • Colubi A, Domínguez-Menchero JS, López-Díaz M, Ralescu DA (2001) On the formalization of fuzzy random variables. Inform Sci 133:3–6

    Article  MATH  MathSciNet  Google Scholar 

  • Colubi A, González-Rodríguez G (2007) Triangular fuzzification of random variables and power of distribution tests: empirical discussion. Comput Stat Data Anal 51:4742–4750

    Article  MATH  Google Scholar 

  • Colubi A, González-Rodríguez G, Lubiano MA, Montenegro M (2006) Exploratory analysis of random variables based on fuzzification. In: Lawry J, Miranda E, Bugarin A, Li S, Gil MA, Grzegorzewski P, Hryniewicz O (eds) Soft methods for integrated uncertainty modelling. Springer, Berlin, pp 95–102

    Google Scholar 

  • Coppi R, D’Urso P, Giordani P, Santoro A (2006a) Least squares estimation of a linear regression model with \(LR\) fuzzy response. Comput Stat Data Anal 51:267–286

    Article  MATH  MathSciNet  Google Scholar 

  • Coppi R, Gil MÁ, Kiers HAL (2006b) The fuzzy approach to statistical analysis. Comput Stat Data Anal 51:1–14

    Article  MATH  MathSciNet  Google Scholar 

  • Denœux T, Masson MH, Herbert PH (2005) Non-parametric rank-based statistics and significance tests for fuzzy data. Fuzzy Sets Syst 153:1–28

    Article  MATH  Google Scholar 

  • Dubois D, Prade H (1983) Ranking of fuzzy numbers in the setting of possibility theory. Inform Sci 30:183–224

    Article  MATH  MathSciNet  Google Scholar 

  • Feng Y (2000) Gaussian fuzzy random variables. Fuzzy Sets Syst 111:325–330

    Article  MATH  Google Scholar 

  • Ferraro MB, Colubi A, González-Rodríguez G, Coppi R (2011) A determination coefficient for a linear regression model with imprecise response. Environmetrics 22:516–529

    Article  MathSciNet  Google Scholar 

  • Gebhardt J, Gil MÁ, Kruse R (1998) Concepts of fuzzy-valued statistics. In: R Slowinski, (ed) Fuzzy sets in decision analysis, operations research and statistics. Kluwer, NewYork, pp 311–347

  • Gibbons JD, Chakraborti S (2003) Non-parametric statistical inference, 4th edn. Marcel Dekker, New York

    Google Scholar 

  • Gil MÁ, López-Díaz M, Ralescu DA (2006) Overview on the development of fuzzy random variables. Fuzzy Sets Syst 157:2546–2557

    Article  MATH  Google Scholar 

  • González-Rodríguez G, Colubi A, Gil MÁ (2006a) A fuzzy representation of random variables: an operational tool in exploratory analysis and hypothesis testing. Comput Stat Data Anal 51:163–176

    Article  MATH  Google Scholar 

  • González-Rodríguez G, Montenegro M, Colubi A, Gil MÁ (2006b) Bootstrap techniques and fuzzy random variables: synergy in hypothesis testing with fuzzy data. Fuzzy Sets Syst 157:2608–2613

    Article  MATH  Google Scholar 

  • Govindarajulu Z (2003) Non-parametric inference. World Scientific, Hackensack

    Google Scholar 

  • Grzegorzewski P (1998) Statistical inference about the median from vague data. Control Cybern 27:447–464

    MATH  MathSciNet  Google Scholar 

  • Grzegorzewski P (2000) Testing statistical hypotheses with vague data. Fuzzy Sets Syst 112:501–510

    Article  MATH  MathSciNet  Google Scholar 

  • Grzegorzewski P (2004) Distribution-free tests for vague data. In: Lopez-Diaz M et al (eds) Soft methodology and random information systems. Springer, Heidelberg, pp 495–502

  • Grzegorzewski P (2005) Two-sample median test for vague data. In: Proceedings of the 4th Conference European Society for Fuzzy Logic and Technology-Eusflat, Barcelona, pp 621–626

  • Grzegorzewski P (2008) A bi-robust test for vague data. In: Magdalena L, Ojeda-Aciego M, Verdegay JL (eds) Proceedings of the 12th international conference on information processing and management of uncertainty in knowledge-based systems, IPMU2008. Spain, Torremolinos (Malaga), June 22–27, pp 138–144

  • Grzegorzewski P (2009) K-sample median test for vague data. Int J Intell Syst 24:529–539

    Article  MATH  Google Scholar 

  • Hesamian G, Taheri SM (2013) Linear rank tests for two-sample fuzzy data: a p-value approach. Journal of Uncertainty Systems 7:129–137

    Google Scholar 

  • Hryniewicz O (2006a) Possibilistic decisions and fuzzy statistical tests. Fuzzy Sets Syst 157:2665–2673

    Article  MATH  MathSciNet  Google Scholar 

  • Hryniewicz O (2006b) Goodman-Kruskal \(\gamma \) measure of dependence for fuzzy ordered categorical data. Comput Stat Data Anal 51:323–334

    Article  MATH  MathSciNet  Google Scholar 

  • Kahraman C, Bozdag CF, Ruan D (2004) Fuzzy sets approaches to statistical parametric and non-parametric tests. Int J Intell Syst 19:1069–1078

    Article  MATH  Google Scholar 

  • Krätschmer V (2001) A unified approach to fuzzy random variables. Fuzzy Sets Syst 123:1–9

    Article  MATH  Google Scholar 

  • Kruse R, Meyer KD (1987) Statistics with vague data. Reidel Publishing Company, Dordrecht

    Book  MATH  Google Scholar 

  • Kvam PH, Vidakovic B (2007) Non-parametric statistics with application to science and engineering. Wiley, New York

    Book  Google Scholar 

  • Kwakernaak H (1978) Fuzzy random variables, part I: definitions and theorems. Inform Sci 19:1–15

    Article  MathSciNet  Google Scholar 

  • Kwakernaak H (1979) Fuzzy random variables, part II: Algorithms and examples for the discrete case. Inform Sci 17:253–278

    Article  MATH  MathSciNet  Google Scholar 

  • Lee KH (2005) First course on fuzzy theory and applications. Springer, Berlin

    MATH  Google Scholar 

  • Liu B (2013) Uncertainty theory, 4th edn. Springer, Berlin

    Google Scholar 

  • Lin P, Wu B, Watada J (2010) Kolmogorov–Smirnov two sample test with continuous fuzzy data. Advances in intelligent and soft computing 68:175–186

    Article  Google Scholar 

  • Peng J, Liu B (2004) Some properties of optimistic and pessimistic values of fuzzy. IEEE Int Conf Fuzzy Syst 2:745–750

    MathSciNet  Google Scholar 

  • Puri ML, Ralescu DA (1985) The concept of normality for fuzzy random variables. Annals Probab 13:1373–1379

    Article  MATH  MathSciNet  Google Scholar 

  • Puri ML, Ralescu DA (1986) Fuzzy random variables. J Math Anal Appl 114:409–422

    Article  MATH  MathSciNet  Google Scholar 

  • Salski A (2007) Fuzzy clustering of fuzzy ecological data. Ecol Inform 2:262–269

    Article  Google Scholar 

  • Shapiro AF (2009) Fuzzy random variables. Insur Math Econ 44:307–314

    Article  MATH  Google Scholar 

  • Simeonov V, Puxbaum H, Tsakowski S, Sarbu C, Kalina M (1999) Classification and receptor modeling of wet precipitation data from central Austria (1984–1993). Environmetrics 10:137–152

    Article  Google Scholar 

  • Taheri SM, Hesamian G (2011) Goodman–Kruskal measure of association for fuzzy-categorized variables. Kybernetika 47:110–122

    MATH  MathSciNet  Google Scholar 

  • Taheri SM, Hesamian G (2013) A generalization of the Wilcoxon signed-rank test and its applications. Sta Pap 54:457–470

    Article  MATH  MathSciNet  Google Scholar 

  • Tscherko D, Kandeler E, Bárdossy A (2007) Fuzzy classification of microbial biomass and enzyme activities in grassland soils. Soil Biol Biochem 39:1799–1808

    Article  Google Scholar 

  • Van Broekhoven E, Adriaenssens V, De Baets B, Verdonschot PFM (2006) Fuzzy rule-based macroinvertebrate habitat suitability models for running waters. Ecol Model 198:71–84

    Article  Google Scholar 

  • Van Broekhoven E, Adriaenssens V, De Baets B (2007) Interpretability-preserving genetic optimization of linguistic terms in fuzzy models for fuzzy ordered classification: an ecological case study. Int J Approx Reason 44:65–90

    Article  MATH  Google Scholar 

  • Viertl R (1990) Statistical inference for fuzzy data in environmetrics. Environmetrics 1:37–42

    Article  Google Scholar 

  • Viertl R (1997) On statistical inference for non-precise data. Environmetrics 8:541–568

    Article  Google Scholar 

  • Viertl R (2011) Statistical methods for fuzzy data. Wiley, Chichester

    Book  MATH  Google Scholar 

  • Wu HC (2005) Statistical hypotheses testing for fuzzy data. Fuzzy Sets Syst 175:30–56

    MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the Editor-in-Chief, Professor Christine H. Müller, and the anonymous referees, for their constructive comments and suggestions that led to an improved version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Hesamian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesamian, G., Chachi, J. Two-sample Kolmogorov–Smirnov fuzzy test for fuzzy random variables. Stat Papers 56, 61–82 (2015). https://doi.org/10.1007/s00362-013-0566-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-013-0566-2

Keywords

Navigation