Statistical Papers

, Volume 54, Issue 4, pp 955–975 | Cite as

On the application of new tests for structural changes on global minimum-variance portfolios

Regular Article


We investigate if portfolios can be improved if the classical Markowitz mean–variance portfolio theory is combined with recently proposed change point tests for dependence measures. Taking into account that the dependence structure of financial assets typically cannot be assumed to be constant over longer periods of time, we estimate the covariance matrix of the assets, which is used to construct global minimum-variance portfolios, by respecting potential change points. It is seen that a recently proposed test for changes in the whole covariance matrix is indeed partially useful whereas pairwise tests for variances and correlations are not suitable for these applications without further adjustments.


Fluctuation test Markowitz Portfolio optimization Structural break 

Mathematics Subject Classification (2010)

62P05 91G10 



Financial support by Deutsche Forschungsgemeinschaft (SFB 823, Statistik nichtlinearer dynamischer Prozesse, project A1) is gratefully acknowledged. We would like to thank two unknown referees for their helpful comments, which led to a substantial improvement of an earlier version of this paper.


  1. Aue A, Hörmann S, Horvàth L, Reimherr M (2009) Break detection in the covariance structure of multivariate time series models. Ann Stat 37(6B):4046–4087CrossRefMATHGoogle Scholar
  2. Best M, Grauer R (1991) On the sensitivity of mean–variance portfolios to changes in asset means: some analytical and computational results. Rev Financ Stud 4(2):315–342CrossRefGoogle Scholar
  3. Bissantz N, Steinorth V, Ziggel D (2011a) Stabilität von Diversifikationseffekten im Markowitz-Modell. AStA Wirtschafts- und Sozialstatistisches Archiv 5(2):145–157CrossRefGoogle Scholar
  4. Bissantz N, Ziggel D, Bissantz K (2011b) An empirical study of correlation and volatility changes of stock indices and their impact on risk figures. Acta Universitatis Danubius (Œconomica) 7(4):127–141Google Scholar
  5. Chopra V, Ziemba W (1993) The effect of errors in means, variances and covariances on optimal portfolio choice. J Potfolio Manag 19(2):6–11CrossRefGoogle Scholar
  6. Chow T, Hsu J, Kalesnik V, Little B (2011) A survey of alternative equity index strategies. Financ Anal J 67(5):37–57CrossRefGoogle Scholar
  7. Chu C-SJ, Stinchcombe M, White H (1996) Monitoring structural change. Econometrica 64(5):1045–1065CrossRefMATHGoogle Scholar
  8. Clarke R, de Silva H, Thorley S (2006) Minimum-variance portfolios in the U.S. equity market. J Portfolio Manag 33(1):10–24CrossRefGoogle Scholar
  9. DeMiguel V, Garlappi L, Uppal R (2009) Optimal versus naive diversification: how inefficient is the 1/N portfolio strategy? Rev Financ Stud 22(5):1915–1953CrossRefGoogle Scholar
  10. Galeano P, Wied D (2012) Multiple change point detection in the correlation structure of random variables. arXiv:1206.5367v1.Google Scholar
  11. Garcia R, Perron P (1996) An analysis of the real interest rate under regime shifts. Rev Econ Stat 78(1): 111–125Google Scholar
  12. Gohout W, Specht K (2007) Mean–variance portfolios using Bayesian vector-autoregressive forecasts. Stat Pap 48(3):403–418MathSciNetCrossRefMATHGoogle Scholar
  13. Golosnoy V, Ragulin S, Schmid W (2011) CUSUM control charts for monitoring optimal portfolio weights. Comput Stat Data Anal 55(11):2991–3009MathSciNetCrossRefMATHGoogle Scholar
  14. Haugen R, Baker N (1991) The efficient market inefficiency of capitalization-weighted stock portfolios. J Portfolio Manag 17(3):35–40Google Scholar
  15. Jagannathan R, Ma T (2003) Risk reduction in large portfolios: why imposing the wrong constrains helps. J Finance 58(4):1651–1684CrossRefGoogle Scholar
  16. Kempf A, Memmel C (2002) Schätzrisiken in der Portfoliotheorie. In: Kleeberg J, Rehkugler H (eds) Handbuch Portfoliomanagement. Uhlenbruch, Bad Soden, pp 893–919Google Scholar
  17. Krishan C, Petkova R, Ritchken P (2009) Correlation risk. J Empir Finance 16(3):353–367CrossRefGoogle Scholar
  18. Markowitz H (1952) Portfolio selection. J Finance 7(1):77–91Google Scholar
  19. Merton R (1980) On estimating the expected return on the market: an exploratory investigation. J Financ Econ 8(4):323–361CrossRefGoogle Scholar
  20. Ploberger W, Krämer W, Kontrus K (1989) A new test for structural stability in the linear regression model. J Econom 40(2):307–318CrossRefMATHGoogle Scholar
  21. Vostrikova L (1981) Detecting ’disorder’ in multidimensional random processes. Sov Math Dokl 24:55–59MATHGoogle Scholar
  22. Wied D, Arnold M, Bissantz N, Ziggel D (2012a) A new fluctuation test for constant variances with application to finance. Metrika 75(8):1111–1127MathSciNetCrossRefMATHGoogle Scholar
  23. Wied D, Galeano P (2013) Monitoring correlation change in a sequence of random variables. J Stat Plan Inference 143(1):186–196MathSciNetCrossRefMATHGoogle Scholar
  24. Wied D, Krämer W, Dehling H (2012b) Testing for a change in correlation at an unknown point in time using an extended functional delta method. Econom Theory 28(3):570–589CrossRefMATHGoogle Scholar
  25. Zhou X, Yin G (2003) Markowitz’s mean–variance portfolio selection with regime switching: a continuous-time model. SIAM J Control Optim 42(4):1466–1482MathSciNetCrossRefMATHGoogle Scholar
  26. Ziggel D, Wied D (2012) Trading strategies based on new fluctuation tests. J Int Fed Tech Anal 2012 ed, 17–20.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.TU DortmundDortmundGermany
  2. 2.quasol GmbHMünsterGermany

Personalised recommendations