Abstract
Data sets with complex relationships between random variables are increasingly studied in statistical applications. A popular approach to model their dependence is the use of copula functions. Our contribution is to derive expressions for the observed and expected information for several bivariate copula families, in particular for the Student’s \(t\)-copula. Further likelihood derivatives which are required for numerical implementations are computed and a numerically stable implementation is provided in the R-package VineCopula. Using a real world data set of stock returns, we demonstrate the applicability of our approach for the routinely calculation of standard errors. In particular, we illustrate how this prevents overestimating the time-variation of dependence parameters in a rolling window analysis.
Similar content being viewed by others
Notes
Maple 13.0. Maplesoft, a division of Waterloo Maple Inc., Waterloo, ON, Canada.
Wolfram Research, Inc., Mathematica, Version 8.0, Champaign, IL, USA (2012).
R Development Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
References
Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula construction of multiple dependence. Insur Math Econ 44:182–198
Abramowitz M, Stegun I (1992) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publishing, New York
Acar EF, Genest C, Nešlehová J (2012) Beyond simplified pair-copula constructions. J Multivar Anal 110:74–90
Bedford T, Cooke R (2001) Probability density decomposition for conditionally dependent random variables modeled by vines. Ann Math Artif Intell 32:245–268
Bedford T, Cooke R (2002) Vines—a new graphical model for dependent random variables. Ann Stat 30:1031–1068
Bedford T, Daneshkhah A (2010) Approximating multivariate distributions with vines. Available online http://strathprints.strath.ac.uk/28364/
Berger JO, Sun D (2008) Objective priors for the bivariate normal model. Ann Stat 36(2):963–982
Berntsen J, Espelid TO, Genz A (1991) An adaptive algorithm for the approximate calculation of multiple integrals. ACM Trans Math Softw 17(4):437–451
Bickel PJ, Doksum KA (2007) Mathematical statistics: basic ideas and selected topics, vol 1, 2nd edn. Pearson Prentice Hall, Upper Saddle River
Boik RJ, Robinson-Cox JF (1998) Derivatives of the incomplete beta function. J Stat Softw 3(1):1–20
Chan NH, Chen J, Chen X, Fan Y, Peng L (2009) Statistical inference for multivariate residual copula of GARCH models. Statistica Sinica 19:53–70
Czado C, Kastenmeier R, Brechmann EC, Min A (2012) A mixed copula model for insurance claims and claim sizes. Scand Actuarial J 2012(4):278–305
Demarta S, McNeil AJ (2005) The t copula and related copulas. Int Stat Rev 73:111–129
Donaldson JR, Schnabel RB (1987) Computational experience with confidence regions and confidence intervals for nonlinear least squares. Technometrics 29(1):67–82
Efron B, Hinkley DV (1978) Assessing the accuracy of the maximum likelihood estimator: observed versus expected fisher information. Biometrika 65(3):457–482
Embrechts P, McNeil A, Straumann D (2002) Correlation and dependence in risk management: properties and pitfalls. In: Dempster M (ed) Risk management: value at risk and beyond. Cambridge University Press, Cambridge, pp 176–223
Genz AC, Malik AA (1980) An adaptive algorithm for numeric integration over an n-dimensional rectangular region. J Comput Appl Math 6(4):295–302
Hobæk Haff I, Segers J (2012) Non-parametric estimation of pair-copula constructions with the empirical pair-copula. ArXiv e-prints 1201.5133
Hofert M, Mächler M, McNeil AJ (2012) Likelihood inference for Archimedean copulas in high dimensions under unknown margins. J Multivar Anal 110:133–150
Huard D, E’vin G, Favre AC (2006) Bayesian copula selection. Comput Stat Data Anal 51:809–822
Joe H (1996) Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters. In: L Rüschendorf, Schweizer B, Taylor MD (eds) Distributions with fixed marginals and related topics. Institute of Mathematical Statistics, Hayward, vol 28, pp 120–141
Joe H (1997) Multivariate models and dependence concepts. Chapman und Hall, London
Lehmann EL, Casella G (1998) Theory of point estimation, 2nd edn. Springer, New York
Mai J, Scherer M (2012) Simulating copulas: stochastic models, sampling algorithms and applications. Series in quantitative finance. World Scientific Publishing Company Incorporated, Singapore
McCullough BD (1999) Assessing the reliability of statistical software: part ii. Am Stat 53(2):149
McNeil AJ, Nešlehová J, (2009) Multivariate archimedean copulas, d-monotone functions and l1-norm symmetric distributions. Ann Stat 37:3059–3097
Nadarajah S (2006) Fisher information for the elliptically symmetric pearson distributions. Appl Math Comput 178(2):195–206
Nelsen R (2006) An introduction to copulas. Springer, New York
Oakes D (1982) A model for association in bivariate survival data. J R Stat Soc Ser B 44(3):414–422
Oakes D, Manatunga AK (1992) Fisher information for a bivariate extreme value distribution. Biometrika 79(4):827–832
Patton AJ (2006) Estimation of multivariate models for time series of possibly different lengths. J Appl Econ 21(2):147–173
Schepsmeier U, Stöber J (2012) Web supplement: derivatives and Fisher information of bivariate copulas. Tech. rep. TU München. Available online https://mediatum.ub.tum.de/node?id=1119201
Schepsmeier U, Stöber J, Brechmann EC (2012) VineCopula: statistical inference of vine copulas. Available online http://cran.r-project.org/web/packages/VineCopula/
Sklar M (1959) Fonctions de répartition á n dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231
Smith MD (2007) Invariance theorems for Fisher information. Commun Stat Theory Methods 36(12):2213–2222
Song PXK, Fan Y, Kalbfleisch JD (2005) Maximization by parts in likelihood inference. J Am Stat Assoc 100(472):1145–1158
Stöber J, Czado C (2011) Detecting regime switches in the dependence structure of high dimensional financial data. ArXiv e-prints 1202.2009
Stöber J, Schepsmeier U (2012) Is there significant time-variation in multivariate copulas? ArXiv e-prints 1205.4841
Acknowledgments
We acknowledge substantial contributions by our working group at Technische Universität München. Numerical calculations were performed on a Linux cluster supported by DFG grant INST 95/919-1 FUGG. The first author gratefully acknowledges the support of the TUM Graduate School’s International School of Applied Mathematics, the second author is supported by TUM’s TopMath program and a research stipend provided by Allianz Deutschland AG.
Author information
Authors and Affiliations
Corresponding author
Proofs
Proofs
In this section we give proofs for Theorem 1 and Corollary 1 in Sect. 3.1.
proof
(Theorem 1) This proof is based on an earlier attempt by Nadarajah (2006). (1) Fisher information with respect to \(\rho \): For the transformed variables \(U\) and \(V\), corresponding to \(\rho = 0\),
the moments are given as
if both \(p\) and \(q\) are even integers (Nadarajah 2006). If either \(p\) or \(q\) is odd, Expression (1) is equal to zero.
For the calculation of the Fisher Information of the Pearson VII distribution with respect to \(\rho \) we need the second partial derivative of the log-density with respect to \(\rho \).
Using the equations in the Appendix of Nadarajah (2006) for \(E[X^pY^q]\) in terms of \(E[U^pV^q]\) and Expression (1), we can determine the Fisher Information of Pearson VII distribution with respect to \(\rho \):
where \(B(a,b)\) is the Beta-function.
(2) and (3) of Theorem 1: (Nadarajah (2006), pp .198–200) \(\square \)
Proof
(Corollary 1) The \(t\)-distribution with parameters \(\rho \in (-1,1)\) and \(\nu >0\) results from the Pearson VII distribution for \(N=\frac{m+2}{2}\) and \(m=\nu \). The log density is
Thus, (1) follows directly from Theorem 1 (1).
Since the Fisher Information for the Pearson VII distribution with respect to \(N, m\) and \(\rho \) is known from Theorem 1 ,we can compute the elements for (2) and (3) of the Fisher Information matrix easily. Denoting the Fisher Information of Pearson VII by \(\mathcal{I }^{P7}\) and the Fisher Information of the \(t\)-distribution by \(\mathcal{I }^{t}\) we obtain
and
Here, \(\mathcal{I }_{m} = E[-\frac{\partial ^2 \log l}{\partial ^2 m}], \mathcal{I }_{mN} = E[-\frac{\partial ^2 \log l}{\partial N\partial m}], \mathcal{I }_{N} = E[-\frac{\partial ^2 \log l}{\partial ^2 N}], \mathcal{I }_{\rho m} = E[-\frac{\partial ^2 \log l}{\partial \rho \partial m}]\) and \(\mathcal{I }_{\rho N} = E[-\frac{\partial ^2 \log l}{\partial \rho \partial N}]\). \(\square \)
Rights and permissions
About this article
Cite this article
Schepsmeier, U., Stöber, J. Derivatives and Fisher information of bivariate copulas. Stat Papers 55, 525–542 (2014). https://doi.org/10.1007/s00362-013-0498-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00362-013-0498-x