Skip to main content

Advertisement

SpringerLink
Maximum likelihood estimation for ordered expectations of correlated binary variables
Download PDF
Download PDF
  • Regular Article
  • Open Access
  • Published: 03 July 2012

Maximum likelihood estimation for ordered expectations of correlated binary variables

  • Wojciech Gamrot1 

Statistical Papers volume 54, pages 727–739 (2013)Cite this article

  • 946 Accesses

  • 2 Citations

  • Metrics details

Abstract

A multivariate binary distribution that incorporates the correlation between individual variables is considered. The availability of auxiliary information taking the form of simple ordering constraints on their expected values is assumed. The problem of constructing constraint-preserving estimates for expectations is formulated as conditional maximization of convex likelihood function for corresponding multinomial distribution with suitably chosen restrictions. Starting values for convex optimization algorithms are proposed. The proposed estimator is consistent under mild assumptions.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Ahuja RK, Orlin JB (2001) A fast scaling algorithm for minimizing separable convex functions subject to chain constraints. Oper Res 49: 784–789

    Article  MathSciNet  MATH  Google Scholar 

  • Ayer M, Brunk HD, Ewing GM, Reid WT, Silverman E (1955) An empirical distribution function for sampling with incomplete information. Ann Math Stat 6(4): 641–647

    Article  MathSciNet  Google Scholar 

  • Barlow RE, Bartholomew DJ, Bremner JM, Brunk HD (1972) Statistical inference under order restrictions. Wiley, New York

    MATH  Google Scholar 

  • Bartoszyński R, Niewiadomska-Bugaj M (2008) Probability and statistical inference. Wiley, New York

    MATH  Google Scholar 

  • Best MJ, Chakravarti N (1990) Active set algorithms for isotonic regression; a unifying framework. Math Program 47: 425–439

    Article  MathSciNet  MATH  Google Scholar 

  • Block H, Qian S, Sampson A (1994) J Comput Graph Stat 3(3): 285–300

    MathSciNet  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New York

    MATH  Google Scholar 

  • Brunk HB (1955) Maximum likelihood estimates of monotone parameters. Ann Math Stat 26: 607–616

    Article  MathSciNet  MATH  Google Scholar 

  • Burdakov O, Grimwall A, Hussian M (2004) A generalized PAV algorithm for monotonic regression in several variables. In: COMPSTAT proceedings in computational statistics. Physica-Verlag/Springer, Heidelberg, pp 761–767

  • Charras A, van Eeden C (1991) Bayes and admissibility properties of estimators in truncated parameter spaces. Can J Stat 19: 121–134

    Article  MATH  Google Scholar 

  • de Leeuw J, Hornik K, Mair P (2009) Isotone optimization in R: pool–adjacent–violators algorithm (PAVA) and active set methods. J Stat Softw 32(5): 1–24

    Google Scholar 

  • Goldberger AS (1964) Econometric theory. Wiley, New York

    MATH  Google Scholar 

  • Hansohm J (2007) Algorithms and error estimations for monotone regression on partially preordered sets. J Multivar Anal 98: 1043–1050

    Article  MathSciNet  MATH  Google Scholar 

  • Hansohm J, Hu X (2012) A convergent algorithm for a generalized multivariate isotonic regression problem. Stat Papers 53(1): 107–115

    Article  MathSciNet  MATH  Google Scholar 

  • Jewell NP, Kalbfleisch JD (2004) Maximum likelihood estimation of ordered multinomial probabilities. Biometrics 5(2): 291–306

    MATH  Google Scholar 

  • Katz MW (1963) Estimating ordered probabilities. Ann Math Stat 34: 967–972

    Article  MATH  Google Scholar 

  • Lange K (2001) Numerical analysis for statisticians. Springer, New York

    Google Scholar 

  • Lee CC (1983) The min–max algorithm and isotonic regression. Ann Stat 11: 467–477

    Article  MATH  Google Scholar 

  • Lehmann EL, Cassella G (1998) Theory of point estimation. Springer, New York

    MATH  Google Scholar 

  • Marchand E, MacGibbon B (2000) Minimax estimation of a constrained binomial proportion. Stat Decis 18: 129–167

    MathSciNet  MATH  Google Scholar 

  • McKeown K, Jewell NP (2010) Miclassification of current status data. Lifetime Data Anal 16: 215–230

    Article  MathSciNet  Google Scholar 

  • Nesterov Y, Nemirovski A (1994) Interior point polynomial algorithms in convex programming, studies in applied mathematics 13. SIAM, Philadelphia

    Book  Google Scholar 

  • Parsian A, Farsipour NS (1997) Estimation of parameters of exponential distribution in the truncated space using asymmetric loss function. Stat Papers 38: 423–443

    Article  MATH  Google Scholar 

  • Perron F (2003) Improving on the MLE of p for a binomial(n,p) when p is around 1/2. In: Moore M, Froda S, Leger C (eds) Mathematical statistics and applications: Fesschrift for Constance van Eeden. IMS lecture notes and monograph series, vol 43. IMS, Hayward, pp 45–61

  • Qian S (1992) Minimum lower sets algorithm for isotonic regression. Stat Probab Lett 15: 31–35

    Article  MATH  Google Scholar 

  • Robertson T, Wright FT, Dykstra RL (1988) Order restricted statistical inference. Wiley, New York

    MATH  Google Scholar 

  • Sackrowitz H (1982) Procedures for improving the MLE for ordered binomial parameters. J Stat Plan Inference 6: 287–296

    Article  MathSciNet  MATH  Google Scholar 

  • Sackrowitz H, Strawderman W (1974) On the admissibility of the M.L.E. for ordered binomial parameters. Ann Stat 2: 822–828

    Article  MathSciNet  MATH  Google Scholar 

  • Sundt B (1999) An introduction to non-life insurance mathematics. VVW, Karlsruhe

    Google Scholar 

  • van Eeden C (1956) Maximum likelihood estimation of ordered probabilities. Proc Kon Nederl Akad Wetensch Ser A 60: 128–136

    Google Scholar 

  • van Eeden C (1957) Maximum likelihood estimation of partially or completely ordered probabilities. Proc Kon Nederl Akad Wetensch Ser A 59: 444–455

    Google Scholar 

  • van Eeden C (1958) Testing and estimating ordered parameters of probability distributions. Ph.D. thesis, University of Amsterdam, Amsterdam

  • van Eeden C (2006) Restricted parameter space estimation problems: admissibility and minimaxity results. Springer, New York

    MATH  Google Scholar 

  • Wolny-Dominiak A, Trze¸siok M (2008) Monte Carlo simulation applied to a’priori rate making, In: Proceedings of 26th international conference mathematical methods in economics 2008. Technical University of Liberec, Liberec, 17–19 Sept 2008

Download references

Acknowledgments

The work was partially supported by the Grant No NN111 558540 from the Ministry of Science and Higher Education. The author is indebted to two anonymous referees for helpful comments that led to generalization of the consistency theorem and improvement of the manuscript.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

  1. Department of Statistics, University of Economics, 1 Maja 50, 40-287, Katowice, Poland

    Wojciech Gamrot

Authors
  1. Wojciech Gamrot
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Wojciech Gamrot.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Gamrot, W. Maximum likelihood estimation for ordered expectations of correlated binary variables. Stat Papers 54, 727–739 (2013). https://doi.org/10.1007/s00362-012-0458-x

Download citation

  • Received: 11 January 2012

  • Revised: 11 June 2012

  • Published: 03 July 2012

  • Issue Date: August 2013

  • DOI: https://doi.org/10.1007/s00362-012-0458-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Binomial parameter
  • Inequality constraints
  • Maximum likelihood

Mathematics Subject Classification (2000)

  • 62F30
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.