Skip to main content
Log in

State space mixed models for longitudinal observations with binary and binomial responses

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We propose a new class of state space models for longitudinal discrete response data where the observation equation is specified in an additive form involving both deterministic and random linear predictors. These models allow us to explicitly address the effects of trend, seasonal or other time-varying covariates while preserving the power of state space models in modeling serial dependence in the data. We develop a Markov chain Monte Carlo algorithm to carry out statistical inference for models with binary and binomial responses, in which we invoke de Jong and Shephard’s (Biometrika 82(2):339–350, 1995) simulation smoother to establish an efficient sampling procedure for the state variables. To quantify and control the sensitivity of posteriors on the priors of variance parameters, we add a signal-to-noise ratio type parameter in the specification of these priors. Finally, we illustrate the applicability of the proposed state space mixed models for longitudinal binomial response data in both simulation studies and data examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H (1973). Information theory and an extension of the maximum likelihood principle. In: Petrov B, Csaki F (eds) 2nd International symposium on information theory. Akademiai Kiado, Budapest

    Google Scholar 

  • Albert J, Chib S (1993). Bayesian analysis of binary and polychotomous response data. J Amer Stat Assoc 88:669–679

    Article  MATH  MathSciNet  Google Scholar 

  • Brockwell PJ, Davis RA (1996) Time series: theory and methods 2nd edn. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Carlin BP, Polson NG (1992). Monte Carlo Bayesian methods for discrete regression models and categorical time series. Bayesian Stat 4:577–586

    Google Scholar 

  • Carlin BP, Polson NG, Stoffer DS (1992). A Monte Carlo approach to nonnormal and nonlinear state-space modeling. J Amer Stat Assoc 87:493–500

    Article  Google Scholar 

  • Carter CK, Kohn R (1994). On Gibbs sampling for state space models. Biometrika 81:541–553

    Article  MATH  MathSciNet  Google Scholar 

  • Casella G, George EI (1992). Explaining the Gibbs Sampler. Amer Stat 46:167–174

    Article  MathSciNet  Google Scholar 

  • Chan KS, Ledolter J (1995). Monte Carlo EM estimation for time series models involving observations. J Amer Stat Assoc 90:242–252

    Article  MATH  MathSciNet  Google Scholar 

  • Cox DR (1981). Statistical analysis of time series, some recent developments. Scand. J Statist 8:93–115

    MATH  MathSciNet  Google Scholar 

  • De Jong P (1991). The diffuse Kalman filter. Ann Stat 2:1073–1083

    Article  MathSciNet  Google Scholar 

  • De Jong P, Shephard N (1995). The simulation smoother for time series models. Biometrika 82(2):339–350

    Article  MATH  MathSciNet  Google Scholar 

  • Diggle PJ, Heagerty P, Liang K-Y, Zeger SL (2002). The Analysis of longitudinal data, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Fahrmeir L (1992). Posterior mode estimation by extended Kalman filtering for multivariate dynamic generalized linear models. J Amer Stat Assoc 87:501–509

    Article  MATH  Google Scholar 

  • Fahrmeir L, Lang S (2001a) Bayesian inference for generalized additive mixed models based on Markov random field priors. Appl Stat 50:201–220

    MathSciNet  Google Scholar 

  • Fahrmeir L, Lang S (2001b) Bayesian semiparametric regression analysis of multicategorical time-space data. Ann Inst Stat Math 53:11–30

    Article  MATH  MathSciNet  Google Scholar 

  • Frühwirth-Schnatter S (1994) Data augmentation and dynamic linear models. J Time Ser Anal 15:183–202

    Article  MATH  MathSciNet  Google Scholar 

  • Gamerman D (1997) Markov chain Monte Carlo: Stochastic simulation for bayesian inference. Chapman and Hall/CRC, New York

    MATH  Google Scholar 

  • Gamerman D (1998) Markov chain Monte Carlo for dynamic generalized linear models. Biometrika 85:215–227

    Article  MATH  MathSciNet  Google Scholar 

  • Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov Chain Monte Carlo in Practice. Chapman and Hall New York

  • Jørgensen B, Lundbye-Christensen S, Song P.X.-K, Sun L (1999) A state-space models for multivariate longitudinal count data. Biometrika 86:169–181

    Article  MathSciNet  Google Scholar 

  • Kitagawa G (1987) Non-Gaussian state-space modelling of non-stationary time series (with comments). J Amer Stat Assoc 82:1032–1063

    Article  MATH  MathSciNet  Google Scholar 

  • Lee PM (1997) Bayesian statistics : an introduction. Arnold, London

    MATH  Google Scholar 

  • Liu JS (2001) Monte Carlo strategies in scientific computing. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models 2nd edn. Chapman and Hall, London

    MATH  Google Scholar 

  • Pitt MK, Shephard N (1999) Analytic convergence rates and parameterization issues for the Gibbs sampler applied to state space models. J Time Ser Anal 20:63–85

    Article  MATH  MathSciNet  Google Scholar 

  • Robert CP (1995) Simulation of truncated normal variables. Stat Comput 5:121–125

    Article  MATH  Google Scholar 

  • Robert CP, Casella G (2004) Monte Carlo statistical methods. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Schotman PC (1994) Priors for the AR(1) model: parametrisation issues and time series considerations. Economet Theory 10:579–595

    Article  MathSciNet  Google Scholar 

  • Song PX-K (2000) Monte Carlo Kalman filter and smoothing for multivariate discrete state space models. Cand J Stat 28:641–652

    Article  MATH  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A(2002) Bayesian measures of model complexity and fit. J. Roy. Stat. Soc. B, 64:583–639

    Article  MATH  Google Scholar 

  • Stoffer DS, Scher MS, Richardson GA, Day NL, Coble PA (1988). A Walsh-Fourier analysis of the effects of moderate maternal alcohol consumption on neonatal sleep-state cycling. J Amer Stat Assoc 83:954–963

    Article  Google Scholar 

  • Sun D, Tsutakawa RK, He Z (2001) Propriety of posteriors with improper priors in hierarchical linear mixed models. Stat Sin 11:77–95

    MATH  MathSciNet  Google Scholar 

  • Tanner MA, Wong WH (1987) The calculation of posterior distributions by data augmentation. J Amer Stat Assoc 82:528–540

    Article  MATH  MathSciNet  Google Scholar 

  • Zeger SL (1988) A regression model for time series of counts. Biometrika 75:621–629

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Czado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czado, C., Song, P.X.K. State space mixed models for longitudinal observations with binary and binomial responses. Stat Papers 49, 691–714 (2008). https://doi.org/10.1007/s00362-006-0039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-006-0039-y

Keywords

Navigation