Skip to main content
Log in

Seasonal flexibility of the gut structure and physiology in Eremias multiocellata

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Although gut seasonal plasticity has been extensively reported, studies on physiological flexibility, such as water-salt transportation and motility in reptiles, are limited. Therefore, this study investigated the intestinal histology and gene expression involved in water-salt transport (AQP1, AQP3, NCC, and NKCC2) and motility regulation (nNOS, CHRM2, and ADRB2) in desert-dwelling Eremias multiocellata during winter (hibernating period) and summer (active period). The results showed that mucosal thickness, the villus width and height, the enterocyte height of the small intestine, and the mucosal and submucosal thicknesses of the large intestine were greater in winter than in summer. However, submucosal thickness of the small intestine and muscularis thickness of the large intestine were lower in winter than in summer. Furthermore, AQP1, AQP3, NCC, nNOS, CHRM2, and ADRB2 expressions in the small intestine were higher in winter than in summer; AQP1, AQP3, and nNOS expressions in the large intestine were lower in winter than in summer, with the upregulation of NCC and CHRM2 expressions; no significant seasonal differences were found in intestinal NKCC2 expression. These results suggest that (i) intestinal water-salt transport activity is flexible during seasonal changes where AQP1, AQP3 and NCC play a vital role, (ii) the intestinal motilities are attenuated through the concerted regulation of nNOS, CHRM2, and ADRB2, and (iii) the physiological flexibility of the small and large intestine may be discrepant due to their functional differences. This study reveals the intestinal regulation and adaptation mechanisms in E. multiocellata in response to the hibernation season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3

Similar content being viewed by others

Data availability

The data sets generated during and (or) analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ADRB2:

Adrenoceptor beta 2

AQPs:

Aquaporins

CHRM2:

Cholinergic receptor muscarinic 2

ENS:

Enteric nervous system

NCC:

Na+-Cl˗ cotransporter

NKCC2:

Na+-K+-2Cl cotransporter

NO:

Nitric oxide

nNOS:

Neuronal nitric oxide synthase

References

  • Ando M, Mukuda T, Kozaka T (2003) Water metabolism in the eel acclimated to sea water: from mouth to intestine. Comp Biochem Phys B 136(4):621–633

    Article  Google Scholar 

  • Bazzini C, Vezzoli V, Sironi C, Dossena S, Ravasio A, De Biasi S, Garavaglia ML, Rodighiero S, Meyer G, Fascio U, Fürst J, Ritter M, Bottà G, Paulmichl M (2005) Thiazide-sensitive NaCl-cotransporter in the intestine. J Biol Chem 280(20):19902–19910

    Article  CAS  PubMed  Google Scholar 

  • Bo TB, Zhang XY, Wang DH (2018) Effects of cold acclimation on the structure of small intestinal mucosa and mucosal immunity-associated cells in Lasiopodomys brandtii. Acta Theriol Sin 38(2):158–165

    Google Scholar 

  • Bozinovic F, Gallardo PA (2006) The water economy of South American desert rodents: from integrative to molecular physiological ecology. Comp Biochem Physiol C 142(3–4):163–172

    Google Scholar 

  • Bozinovic F, Novoa FF, Veloso C (1990) Seasonal changes in energy expenditure and digestive tract of Abrothrix andinus (Cricetidae) in the Andes range. Physiol Zool 63(6):1216–1231

    Article  Google Scholar 

  • Brown D (2017) The discovery of water channels (aquaporins). Ann Nutr Metab 70(Suppl. 1):37–42

    Article  PubMed  Google Scholar 

  • Carey HV (1990) Seasonal changes in mucosal structure and function in ground squirrel intestine. Am J Physiol 259(2):385–392

    Google Scholar 

  • Cutler CP, Cramb G (2008) Differential expression of absorptive cation-chloride-cotransporters in the intestinal and renal tissues of the European eel (Anguilla anguilla). Comp Biochem Physiol B Biochem Mol Biol 149(1):63–73

    Article  PubMed  Google Scholar 

  • Del Valle JC, López Mañanes AA, Busch C (2004) Phenotypic flexibility of digestive morphology and physiology of the South American omnivorous rodent Akodon azarae (Rodentia: Sigmodontinae). Comp Biochem Physiol A Mol Integr Physiol 139(4):503–512

    Article  PubMed  Google Scholar 

  • Djurisic M, Forbush B (2006) Regulation of NKCC2 expression in the gut of Fundulus heteroclitus on change in salinity. Bull Mt Desert Isl Biol Lab 45:15

    Google Scholar 

  • Do Nascimento LF, Da Silveira LC, Nisembaum LG, Colquhoun A, Abe AS, Mandarim-de-Lacerda CA, De Souza SC (2016) Morphological and metabolic adjustments in the small intestine to energy demands of growth, storage, and fasting in the first annual cycle of a hibernating lizard (Tupinambis merianae). Comp Biochem Physiol A-Mol Integr Physiol 195:55–64

    Article  CAS  PubMed  Google Scholar 

  • Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9(6):286–294

    Article  CAS  PubMed  Google Scholar 

  • Gallardo PA, Olea N, Sepúlveda FV (2002) Distribution of aquaporins in the colon of Octodon degus, a South American desert rodent. Am J Physiol-Regul Integr Comp Physiol 283(3):779–788

    Article  Google Scholar 

  • Gallego D, Mañé N, Gil V, Martínez-Cutillas M, Jimenez M (2016) Mechanisms responsible for neuromuscular relaxation in the gastrointestinal tract. Rev Esp Enferm Dig 108(11):721–731

    CAS  PubMed  Google Scholar 

  • Hamann S, Herrera-Pérez JJ, Bundgaard M, Alvarez-Leefmans FJ, Zeuthen T (2005) Water permeability of Na+–K+–2Cl cotransporters in mammalian epithelial cells. J Physiol 568(1):123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heldmaier G, Lynch GR (1986) Pineal involvement in thermoregulation and adaptation. Pineal Res Rev 4:97–139

    CAS  Google Scholar 

  • Holzer P, Schicho R, Holzer-Petsche U, Lippe IT (2001) The gut as a neurological organ. Wien Klin Wochen 113(17–18):647–660

    CAS  Google Scholar 

  • Hu G, Gong A, Roth AL, Huang BQ, Ward HD, Zhu G, LaRusso NF, Hanson ND, Chen X (2013) Release of luminal exosomes contributes to TLR4-mediated epithelial antimicrobial defense. PLoS Pathog 9(4):1003261

    Article  Google Scholar 

  • Ikarashi N, Kon R, Iizasa T, Suzuki N, Hiruma R, Suenaga K, Toda T, Ishii M, Hoshino M, Ochiai W, Sugiyama K (2012) Inhibition of aquaporin-3 water channel in the colon induces diarrhea. Biol Pharm Bull 35(6):957–962

    Article  CAS  PubMed  Google Scholar 

  • Jani A, Martin SL, Jain S, Keys DO, Edelstein CL (2013) Renal adaptation during hibernation. Am J Physiol 305(11):1521–1532

    Google Scholar 

  • Jeong JH, Lee DK, Jo Y (2017) Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Mol Metab 6(3):306–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MW (2006) Molecular mechanisms of beta (2)-adrenergic receptor function, response, and regulation. J Allergy Clin Immunol 117(1):18–24

    Article  CAS  PubMed  Google Scholar 

  • Kamiar A, Yousefi K, Dunkley JC, Webster KA, Shehadeh LA (2021) β2-adrenergic receptor agonism as a therapeutic strategy for kidney disease. Am J Physiol-Regul Integr Comp Physiol 320(5):575–587

    Article  Google Scholar 

  • Karasov WH, Martinez Del Rio C, Caviedes-Vidal E (2011) Ecological physiology of diet and digestive systems. Annu Rev Physiol 73:69–93

    Article  CAS  PubMed  Google Scholar 

  • King LS, Kozono DE, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 5(9):687–698

    Article  CAS  PubMed  Google Scholar 

  • Laforenza U (2012) Water channel proteins in the gastrointestinal tract. Mol Asp Med 33(5–6):642–650

    Article  CAS  Google Scholar 

  • Lionetto MG, Schettino T (2006) The Na+–K+–2Cl cotransporter and the osmotic stress response in a model salt transport epithelium. Acta Physiol 187(1–2):115–124

    Article  CAS  Google Scholar 

  • Liu QS, Zhang ZQ, Caviedes-Vidal E, Wang DH (2013) Seasonal plasticity of gut morphology and small intestinal enzymes in free-living Mongolian gerbils. J Comp Physiol B Biochem Syst Environ Physiol 183(4):511–523

    Article  CAS  Google Scholar 

  • Lv J, Xie Z, Sun Y, Sun C, Liu L, Yu TF, Xu X, Shao S, Wang C (2014) Seasonal plasticity of duodenal morphology and histology in Passer montanus. Zoomorphology 133:435–443

    Article  Google Scholar 

  • Ma L, Sun B, Cao P, Li X, Du W (2018) Phenotypic plasticity may help lizards cope with increasingly variable temperatures. Oecologia 187:37–45

    Article  PubMed  Google Scholar 

  • Masyuk AI, Marinelli RA, LaRusso NF (2002) Water transport by epithelia of the digestive tract. Gastroenterology 122(2):545–562

    Article  PubMed  Google Scholar 

  • Mazet B (2014) Gastrointestinal motility and its enteric actors in mechanosensitivity: past and present. Pflugers Arch 467(1):191–200

    Article  PubMed  Google Scholar 

  • Nase GP, Boegehold MA (1997) Endothelium-derived nitric oxide limits sympathetic neurogenic constriction in intestinal microcirculation. Am J Physiol 273(1):426–433

    Google Scholar 

  • Naya DE, Veloso C, Bozinovic F (2008) Physiological flexibility in the Andean lizard Liolaemus bellii: seasonal changes in energy acquisition, storage and expenditure. J Comp Physiol B Biochem Syst Environ Physiol 178(8):1007–1015

    Article  Google Scholar 

  • Naya DE, Veloso C, Sabat P, Bozinovic F (2009a) The effect of short- and long-term fasting on digestive and metabolic flexibility in the Andean toad. Bufo Spinulosus J Exp Biol 212(14):2167–2175

    Article  CAS  PubMed  Google Scholar 

  • Naya DE, Veloso C, Sabat P, Bozinovic F (2009b) Seasonal flexibility of organ mass and intestinal function for the Andean lizard Liolaemus nigroviridis. J Exp Zool 311A:270–277

    Article  Google Scholar 

  • Naya DE, Veloso C, Sabat P, Bozinovic F (2011) Physiological flexibility and climate change: the case of digestive function regulation in lizards. Comp Biochem Physiol A-Mol Integr Physiol 159(1):100–104

    Article  PubMed  Google Scholar 

  • Neunlist M, Schemann M (2014) Nutrient-induced changes in the phenotype and function of the enteric nervous system. J Physiol 592(14):2959–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novoa FF, Veloso C, López-Calleja MV, Bozinovic F (1996) Seasonal changes in diet, digestive morphology and digestive efficiency in the rufous-collared sparrow (Zonotrichia Capensis) in central Chile. The Condor 98(4):873–876

    Article  Google Scholar 

  • Paksuz EP (2014) The effect of hibernation on the morphology and histochemistry of the intestine of the greater mouse-eared bat Myotis Myotis. Acta Histochem 116(8):1480–1489

    Article  CAS  PubMed  Google Scholar 

  • Pennisi E (2005) The dynamic gut. Science 307:1896–1899

    Article  CAS  PubMed  Google Scholar 

  • Piscitiello E, Herwig A, Haugg E, Schröder B, Breves G, Steinlechner S, Diedrich V (2020) Acclimation of intestinal morphology and function in djungarian hamsters (Phodopus sungorus) related to seasonal and acute energy balance. J Exp Biol 224(4):232876

    Article  Google Scholar 

  • Pluske JR, Williams I, Aherne FX (1996) Villous height and crypt depth in piglets in response to increases in the intake of cows’ milk after weaning. Anim Sci 62(1):145–158

    Article  Google Scholar 

  • Rechkemmer G, Engelhardt WV (1993) Absorption and secretion of electrolytes and short-chain fatty acids in the guinea pig large intestine. Springer-Verlag Berlin Heidelberg 16:139–163

    CAS  Google Scholar 

  • Secor SM (2005) Physiological responses to feeding, fasting and estivation for anurans. J Exp Biol 208(13):2595–2609

    Article  PubMed  Google Scholar 

  • Secor SM, Stein ED, Diamond JM (1994) Rapid upregulation of snake intestine in response to feeding: a new model of intestinal adaptation. Am J Physiol 266(4):695–705

    Google Scholar 

  • Stark ME, Szurszewski JH (1992) Role of nitric oxide in gastrointestinal and hepatic function and disease. Gastroenterology 103:1928–1949

    Article  CAS  PubMed  Google Scholar 

  • Stengel PW, Gomeza J, Wess J, Cohen M (2000) M2 and M4 receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. J Pharmacol Exp Ther 292(3):877–885 (Pmid: 10688600)

    CAS  PubMed  Google Scholar 

  • Taksande BG, Kotagale NR, Nakhate KT, Mali PD, Kokare DM, Hirani K, Subhedar NK, Chopde CT, Ugale RR (2011) Agmatine in the hypothalamic paraventricular nucleus stimulates feeding in rats: involvement of neuropeptide Y. Br J Pharmacol 164(2b):704–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchiyama T, Chess-Williams R (2004) Muscarinic receptor subtypes of the bladder and gastrointestinal tract. J Smooth Muscle Res 40(6):237–247

    Article  PubMed  Google Scholar 

  • Vistro WA, Tarique I, Haseeb A, Yang PO, Huang Y, Chen H, Bai X, Fazlani SA, Chen Q (2019) Seasonal exploration of ultrastructure and Na+/K+-ATPase, Na+/K+/2Cl- cotransporter of mitochondria-rich cells in the small intestine of turtles. Micron 126:102747

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Yang ZJ, Li JG, He JP (2016) Seasonal variations of morphological features and tissue structures of the digestive tract in Gansu Zokor (Myospalax cansus). Chin J Zool 51(4):573–582

    Google Scholar 

  • Zaldúa N, Naya DE (2014) Digestive flexibility during fasting in fish: a review. Comp Biochem Physiol A-Mol Integr Physiol 169:7–14

    Article  PubMed  Google Scholar 

  • Zhong QM, Wang JL (2022) Seasonal flexibility of kidney structure and water and salt regulating factors in Eremias multiocellata. Comp Biochem Physiol A Mol Integr Physiol 274:111301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yongping Ma for assistance with experiments. We also appreciate the valuable comments and suggestions by the anonymous reviewer. This research was funded by the Ningxia Natural Science Foundation (Grants No.2022AAC03259), the Program for Excellent Talents of North Minzu University (2019BGBZ01) and the Program for Excellent Talents in Ningxia Hui Autonomous Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Li Wang.

Ethics declarations

Conflict of interest

The authors declare no competing or financial interests.

Additional information

Communicated by B. Pelster.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, QM., Zheng, YH. & Wang, JL. Seasonal flexibility of the gut structure and physiology in Eremias multiocellata. J Comp Physiol B 193, 281–291 (2023). https://doi.org/10.1007/s00360-023-01485-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-023-01485-6

Keywords

Navigation