Skip to main content

Advertisement

Log in

Analysis of heat and cold tolerance of a freeze-tolerant soil invertebrate distributed from temperate to Arctic regions: evidence of selection for extreme cold tolerance

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Tolerance to thermal extremes is critical for the geographic distributions of ectotherm species, many of which are probably going to be modified by future climatic changes. To predict species distributions it is important to understand the potential of species to adapt to changing thermal conditions. Here, we tested whether the thermal tolerance traits of a common freeze-tolerant potworm were correlated with climatic conditions and if adaptation to extreme cold constrains the evolutionary potential for high temperature tolerance. Further, we tested if evolution of thermal tolerance traits is associated with costs in other fitness traits (body size and reproduction). Lastly, we tested if slopes of temperature-survival curves (i.e., the sensitivity distribution) are related to tolerance itself. Using 24 populations of the potworm, Enchytraeus albidus Henle (Enchytraeidae), collected from a wide range of climatic conditions, we established a common garden experiment in which we determined high and low temperature tolerance (using survival as endpoint), average reproductive output and adult body size. Heat tolerance was not related to environmental temperatures whereas lower lethal temperature was about 10 °C lower in Arctic populations than in populations from temperate regions. Reproduction was not related to environmental temperature, but was negatively correlated with cold tolerance. One explanation for the trade-off between cold tolerance and reproduction could be that the more cold-hardy populations need to channel energy to large glycogen reserves at the expense of less energy expenditure for reproduction. Adult body size was negatively related to environmental temperature. Finally, the slopes of temperature-survival curves were significantly correlated with critical temperature limits for heat and cold tolerance; i.e., slopes increased with thermal tolerance. Our results suggest that relatively heat-sensitive populations possess genetic variation, leaving room for improved heat tolerance through evolutionary processes, which may alleviate the effects of a warmer future climate in the Arctic. On the other hand, we observed relatively narrow sensitivity distributions (i.e., less variation) in the most heat tolerant populations. Taken together, our results suggest that both cold and heat tolerance can only be selected for (and improved) until a certain limit has been reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data available from the Dryad Digital Repository (to be done; all data available as supplemental file).

References

  • Addo-Bediako A, Chown S, Gaston K (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc Lond B 267:739–745

    Article  CAS  Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation—a theoretical and empirical synthesis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bahrndorff S, Holmstrup M, Petersen H, Loeschcke V (2006) Geographic variation for climatic stress resistance traits in the springtail Orchesella cincta. J Insect Physiol 52(9):951–959

    Article  CAS  PubMed  Google Scholar 

  • Bahrndorff S, Petersen SO, Loeschcke V, Overgaard J, Holmstrup M (2007) Differences in cold and drought tolerance of high arctic and sub-arctic populations of Megaphorura arctica Tullberg 1876 (Onychiuridae : Collembola). Cryobiology 55(3):315–323

    Article  CAS  PubMed  Google Scholar 

  • Berman DI, Leirikh AN (1985) The ability of the earthworm Eisenia nordenskioldi (Eisen) (Lumbricidae, Oligochaeta) to endure subfreezing temperatures. Proc Acad Sci USSR 285:1258–1261

    Google Scholar 

  • Bowler K (2018) Heat death in poikilotherms: Is there a common cause? J Therm Biol 76:77–79

    Article  PubMed  Google Scholar 

  • Bubliy OA, Loeschcke V (2005) Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J Evol Biol 18(4):789–803. https://doi.org/10.1111/j.1420-9101.2005.00928.x

    Article  CAS  PubMed  Google Scholar 

  • Calderon S, Holmstrup M, Westh P, Overgaard J (2009) Dual roles of glucose in the freeze-tolerant earthworm Dendrobaena octaedra: cryoprotection and fuel for metabolism. J Exp Biol 212(6):859–866. https://doi.org/10.1242/jeb.026864

    Article  CAS  PubMed  Google Scholar 

  • Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ, Stenseth NC, Pertoldi C (2010) Adapting to climate change: a perspective from evolutionary physiology. Clim Res 43(1–2):3–15. https://doi.org/10.3354/cr00879

    Article  Google Scholar 

  • Chown SL, Terblanche JS (2007) Physiological diversity in insects: Ecological and evolutionary contexts. Adv Insect Physiol 33:50–152

    Article  Google Scholar 

  • Clarke A (2003) Costs and consequences of evolutionary temperature adaptation. Trends Ecol Evol 18(11):573–581. https://doi.org/10.1016/j.tree.2003.08.007

    Article  Google Scholar 

  • Costanzo JP (2019) Overwintering adaptations and extreme freeze tolerance in a subarctic population of the wood frog, Rana sylvatica. J Compar Physiol B Biochem Syst Environ Physiol 189(1):1–15. https://doi.org/10.1007/s00360-018-1189-7

    Article  Google Scholar 

  • Costanzo JP, Reynolds AM, do Amaral MCF, Rosendale AJ, Lee RE (2015) Cryoprotectants and extreme freeze tolerance in a subarctic population of the Wood Frog. Plos One 10 (2). https://doi.org/10.1371/journal.pone.0117234

  • Coulson SJ, Birkemoe T (2000) Long-term cold tolerance in Arctic invertebrates: recovery after 4 years at below -20 °C. Can J Zool 78:2055–2058

    Article  Google Scholar 

  • Coyle DR, Nagendra UJ, Taylor MK, Campbell JH, Cunard CE, Joslin AH, Mundepi A, Phillips CA, Callaham MA (2017) Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action. Soil Biol Biochem 110:116–133. https://doi.org/10.1016/j.soilbio.2017.03.008

    Article  CAS  Google Scholar 

  • Dai W, Slotsbo S, Holmstrup M (2021) Thermal optimum for mass production of the live feed organism Enchytraeus albidus. J Thermal Biol 97:102865

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105(18):6668–6672. https://doi.org/10.1073/pnas.0709472105

    Article  PubMed Central  PubMed  Google Scholar 

  • Didden WAM (1993) Ecology of terrestrial Enchytraeidae—review. Pedobiologia 37(1):2–29

    Google Scholar 

  • Erséus C, Klinth MJ, Rota E, De Wit P, Gustafsson DR, Martinsson S (2019) The popular model annelid Enchytraeus albidus is only one species in a complex of seashore white worms (Clitellata, Enchytraeidae). Org Divers Evol 19:105–133. https://doi.org/10.1007/s13127-019-00402-6

    Article  Google Scholar 

  • Fisker KV, Bouvrais H, Overgaard J, Schoettner K, Ipsen JH, Holmstrup M (2015) Membrane properties of Enchytraeus albidus originating from contrasting environments: a comparative analysis. J Comp Physiol B 185(4):389–400. https://doi.org/10.1007/s00360-015-0895-7

    Article  CAS  PubMed  Google Scholar 

  • Fisker KV, Holmstrup M, Malte H, Overgaard J (2014a) Effect of repeated freeze-thaw cycles on geographically different populations of the freeze-tolerant worm Enchytraeus albidus (Oligochaeta). J Exp Biol 217(21):3843–3852. https://doi.org/10.1242/jeb.105650

    Article  PubMed  Google Scholar 

  • Fisker KV, Overgaard J, Sørensen JG, Slotsbo S, Holmstrup M (2014b) Roles of carbohydrate reserves for local adaptation to low temperatures in the freeze tolerant oligochaete Enchytraeus albidus. J Comp Physiol B 184(2):167–177. https://doi.org/10.1007/s00360-013-0788-6

    Article  CAS  PubMed  Google Scholar 

  • Greenslade PJM (1983) Adversity selection and the habitat templet. Am Nat 122:352–365

    Article  Google Scholar 

  • Henry HAL (2008) Climate change and soil freezing dynamics: historical trends and projected changes. Clim Change 87(3–4):421–434. https://doi.org/10.1007/s10584-007-9322-8

    Article  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Hochachka P, Somero G (2002) Biochemical Adaptation. Mechanism and process in physiological evolution. Oxford University Press, New York

  • Hoffmann AA, Anderson A, Hallas R (2002) Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol Lett 5(5):614–618

    Article  Google Scholar 

  • Hoffmann AA, Hallas RJ, Dean JA, Schiffer M (2003a) Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301(5629):100–102

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Parsons PA (1991) Evolutionary genetics and environmental stress. Oxford University Press, Oxford

    Google Scholar 

  • Hoffmann AA, Sørensen JG, Loeschcke V (2003b) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J Therm Biol 28(3):175–216

    Article  Google Scholar 

  • Holmstrup M, Krogh PH, Lokke H, de Wolf W, Marshall S, Fox K (2001) Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 4. The influence of salt speciation, soil type, and sewage sludge on toxicity using the collembolan Folsomia fimetaria and the earthworm Aporrectodea caliginosa as test organisms. Environ Toxicol Chem 20(8):1680–1689

  • Holmstrup M, Overgaard J (2007) Freeze tolerance in Aporrectodea caliginosa and other earthworms from Finland. Cryobiology 55(1):80–86

    Article  CAS  PubMed  Google Scholar 

  • Holmstrup M, Overgaard J, Bindesbøl AM, Pertoldi C, Bayley M (2007) Adaptations to overwintering in the earthworm Dendrobaena octaedra: Genetic differences in glucose mobilisation and freeze tolerance. Soil Biol Biochem 39(10):2640–2650

    Article  CAS  Google Scholar 

  • Holmstrup M, Petersen BF (1997) Freeze-tolerance in the subarctic earthworm Eisenia nordenskioeldi (Eisen). CryoLetters 18:153–156

    Google Scholar 

  • IPCC (2014) Climate Change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland

  • Isard SA, Schaetzl RJ, Andresen JA (2007) Soils cool as climate warms in the Great Lakes region: 1951–2000. Ann Assoc Am Geogr 97:467–476

    Article  Google Scholar 

  • Jensen A, Alemu T, Alemneh T, Pertoldi C, Bahrndorff S (2019) Thermal acclimation and adaptation across populations in a broadly distributed soil arthropod. Funct Ecol 33(5):833–845. https://doi.org/10.1111/1365-2435.13291

    Article  Google Scholar 

  • Johannesen ST, Holmstrup M, Sørensen JG (2013) High temperature tolerance and heat hardening ability in Enchytraeus albidus Henle, 1837 (Oligochaeta) show no interaction with lipophilic organic pollutants. Soil Organisms 85(2):75–83

    Google Scholar 

  • Kähler HH (1970) Über den einfluss der adaptationstemperatur und des salzgehaltes auf die hitze- und gefrierresistenz von Enchytraeus albidus (Oligochaeta). Mar Biol 5:315–324

    Article  Google Scholar 

  • Lee K (1985) Earthworms. Academic press, Sydney, Their ecology and relationships with soils and land use

    Google Scholar 

  • MacLean HJ, Sorensen JG, Kristensen TN, Loeschcke V, Beedholm K, Kellermann V, Overgaard J (2019) Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Philos Trans R Soc B Biol Sci 374 (1778). https://doi.org/10.1098/rstb.2018.0548

  • Martinsson S, Erséus C (2014) Cryptic diversity in the well-studied terrestrial worm Cognettia sphagnetorum (Clitellata: Enchytraeidae). Pedobiologia 57(1):27–35. https://doi.org/10.1016/j.pedobi.2013.09.006

    Article  Google Scholar 

  • O’Connor F (1955) Extraction of enchytraeid worms from a coniferous forest soil. Nature 175:815–816

    Article  Google Scholar 

  • OECD (2004) Test no. 220: Enchytraeid Reproduction Test. OECD Guidelines for the Testing of Chemicals, Paris, France

  • Overgaard J, Hoffmann AA, Kristensen TN (2011) Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. J Therm Biol 36(7):409–416. https://doi.org/10.1016/j.jtherbio.2011.07.005

    Article  Google Scholar 

  • Overgaard J, Tomcala A, Sørensen JG, Holmstrup M, Krogh PH, Simek P, Kostal V (2008) Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster. J Insect Physiol 54(3):619–629

    Article  CAS  PubMed  Google Scholar 

  • Patricio Silva AL, Holmstrup M, Amorim MJB (2013a) Worms from the Arctic are better adapted to freezing and high salinity than worms from temperate regions: oxidative stress responses in Enchytraeus albidus. Compar Biochem Physiol Mol Integr Physiol 166(4):582–589. https://doi.org/10.1016/j.cbpa.2013.09.004

    Article  CAS  Google Scholar 

  • Patricio Silva AL, Holmstrup M, Kostal V, Amorim MJB (2013b) Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus. J Exp Biol 216(14):2732–2740. https://doi.org/10.1242/jeb.083238

    Article  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria., vol URL http://www.R-project.org.

  • Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-response analysis using R. PLoS ONE 10:e0146021

  • Schmelz RM, Collado R (2010) A guide to European terrestrial and freshwater species of Enchytraeidae (Oligochaeta). Soil Organisms 82:1–176

    Google Scholar 

  • Sgro CM, Overgaard J, Kristensen TN, Mitchell KA, Cockerell FE, Hoffmann AA (2010) A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia. J Evol Biol 23(11):2484–2493. https://doi.org/10.1111/j.1420-9101.2010.02110.x

    Article  CAS  PubMed  Google Scholar 

  • Sibly RM, Calow P (1989) A life-cycle theory of responses to stress. Biol J Lin Soc 37:101–116

    Article  Google Scholar 

  • Sinclair BJ, Alvarado LEC, Ferguson LV (2015) An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J Therm Biol 53:180–197. https://doi.org/10.1016/j.jtherbio.2015.11.003

    Article  PubMed  Google Scholar 

  • Sinclair BJ, Ferguson LV, Salehipour-Shirazi G, MacMillan HA (2013) Cross-tolerance and cross-talk in the cold: Relating low temperatures to desiccation and immune stress in insects. Integr Comp Biol 53(4):545–556. https://doi.org/10.1093/icb/ict004

    Article  PubMed  Google Scholar 

  • Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S, Dong YW, Harley CDG, Marshall DJ, Helmuth BS, Huey RB (2016) Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol Lett 19(11):1372–1385. https://doi.org/10.1111/ele.12686

    Article  PubMed  Google Scholar 

  • Slotsbo S, Maraldo K, Malmendal A, Nielsen NC, Holmstrup M (2008) Freeze tolerance and accumulation of cryoprotectants in the enchytraeid Enchytraeus albidus (Oligochaeta) from Greenland and Europe. Cryobiology 57(3):286–291. https://doi.org/10.1016/j.cryobiol.2008.09.010

    Article  CAS  PubMed  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine “winners” and “losers.” J Exp Biol 213(6):912–920. https://doi.org/10.1242/jeb.037473

    Article  CAS  PubMed  Google Scholar 

  • Stephenson J (1930) The Oligochaeta. Clarendon Press, Oxford

    Google Scholar 

  • Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6(11):1025–1037

    Article  Google Scholar 

  • Sørensen JG, Loeschcke V, Kristensen TN (2013) Cellular damage as induced by high temperature is dependent on rate of temperature change—investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster. J Exp Biol 216:809–814. https://doi.org/10.1242/jeb.076356

    Article  CAS  PubMed  Google Scholar 

  • Sørensen MH, Kristensen TN, Lauritzen JMS, Noer NK, Høye TT, Bahrndorff S (2019) Rapid induction of the heat hardening response in an Arctic insect. Biol Let 15:20190613

    Article  Google Scholar 

  • Teets NM, Hahn DA (2018) Genetic variation in the shape of cold-survival curves in a single fly population suggests potential for selection from climate variability. J Evol Biol 31(4):543–555. https://doi.org/10.1111/jeb.13244

    Article  CAS  PubMed  Google Scholar 

  • Thyrring J, Blicher ME, Sørensen JG, Wegeberg S, Sejr MK (2017) Rising air temperatures will increase intertidal mussel abundance in the Arctic. Mar Ecol Prog Ser 584:91–104. https://doi.org/10.3354/meps12369

    Article  Google Scholar 

  • Toxopeus J, Sinclair BJ (2018) Mechanisms underlying insect freeze tolerance. Biol Rev 93(4):1891–1914. https://doi.org/10.1111/brv.12425

    Article  PubMed  Google Scholar 

  • Urban MC (2015) Accelerating extinction risk from climate change. Science 348(6234):571–573. https://doi.org/10.1126/science.aaa4984

    Article  CAS  PubMed  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern Applied Statistics with S. Springer

    Book  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395. https://doi.org/10.1038/416389a

    Article  CAS  PubMed  Google Scholar 

  • Westheide W, Müller MC (1996) Cinematographic documentation of enchytraeid morphology and reproductive biology. Hydrobiologia 334(1–3):263–267. https://doi.org/10.1007/bf00017376

    Article  Google Scholar 

  • Zagar A, Holmstrup M, Simcic T, Debeljak B, Slotsbo S (2018) Comparing Enchytraeus albidus populations from contrasting climatic environments suggest a link between cold tolerance and metabolic activity. Compar Biochem Physiol A 224:35–41. https://doi.org/10.1016/j.cbpa.2018.05.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study received support from EU FP7 Interact Transnational Access and The Independent Research Fund Denmark to MH (Grant No. 1026-00055B). We thank T.Q. Egholm, Z. Gavor, E. Jørgensen and D. Kutcherov for technical assistance. The authors declare no conflicts of interest.

Funding

This article was funded by Natur og Univers, Det Frie Forskningsråd (Grant no. 1026-00055B).

Author information

Authors and Affiliations

Authors

Contributions

MH, SS and JGS conceived the ideas and designed methodology; All authors collected the data; PHK provided the DNA barcoding; MH, SS and JGS analyzed the data; MH led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Martin Holmstrup.

Additional information

Communicated by G. Heldmaier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 935 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmstrup, M., Sørensen, J.G., Dai, W. et al. Analysis of heat and cold tolerance of a freeze-tolerant soil invertebrate distributed from temperate to Arctic regions: evidence of selection for extreme cold tolerance. J Comp Physiol B 192, 435–445 (2022). https://doi.org/10.1007/s00360-022-01433-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-022-01433-w

Keywords

Navigation