Skip to main content
Log in

Changing lanes: seasonal differences in cellular metabolism of adipocytes in grizzly bears (Ursus arctos horribilis)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Obesity is among the most prevalent of health conditions in humans leading to a multitude of metabolic pathologies such as type 2 diabetes and hyperglycemia. However, there are many wild animals that have large seasonal cycles of fat accumulation and loss that do not result in the health consequences observed in obese humans. One example is the grizzly bear (Ursus arctos horribilis) that can have body fat content > 40% that is then used as the energy source for hibernation. Previous in vitro studies found that hibernation season adipocytes exhibit insulin resistance and increased lipolysis. Yet, other aspects of cellular metabolism were not addressed, leaving this in vitro model incomplete. Thus, the current studies were performed to determine if the cellular energetic phenotype—measured via metabolic flux—of hibernating bears was retained in cultured adipocytes and to what extent that was due to serum or intrinsic cellular factors. Extracellular acidification rate and oxygen consumption rate were used to calculate proton efflux rate and total ATP defined as both ATP from glycolysis and from mitochondrial respiration. Hibernation adipocytes treated with hibernation serum produced less ATP and exhibited lower maximal respiration and glycolysis rates than active season adipocytes. These effects were reversed with serum from the opposite season. Insulin had little influence on total ATP production and lipolysis in both hibernation and active serum-treated adipocytes. Together, these results suggest that the metabolic suppression occurring in hibernation adipocytes are downstream of insulin signaling and likely due to a combined reduction in mitochondria number and/or function and glycolytic processes. Future elucidation of the serum components and the cellular mechanisms that enable alterations in mitochondrial function could provide a novel avenue for the development of treatments for human metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahlquist DA, Nelson RA, Steiger DL et al (1984) Glycerol metabolism in the hibernating black bear. J Comp Physiol B 155:75–79. https://doi.org/10.1007/BF00688794

    Article  CAS  Google Scholar 

  • Blumenthal S, Morgan-Boyd R, Nelson R, Garshelis DL, Turyk ME, Unterman T (2011) Seasonal regulation of the growth hormone-insulin-like growth factor-I axis in the American black bear (Ursus americanus). Am J Physiol Endocrinol Metab 301:E628–E636

    Article  CAS  PubMed  Google Scholar 

  • Boyer BB, Barnes BM (1999) Molecular and metabolic aspects of mammalian hibernation. Bioscience 49:713–724

    Article  Google Scholar 

  • Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312. https://doi.org/10.1042/BJ20110162

    Article  CAS  PubMed  Google Scholar 

  • Bu Y, Okunishi K, Yogosawa S, Mizuno K, Irudayam MJ, Brown CW, Izumi T (2018) Insulin regulates lipolysis and fat mass by upregulating growth/differentiation factor 3 in adipose tissue macrophages. Diabetes 67(9):1761–1772. https://doi.org/10.2337/db17-1201 (Epub 2018 Jun 26 PMID: 29945891)

    Article  CAS  PubMed  Google Scholar 

  • Cadenas S (2018) Mitochondrial uncoupling, ROS generation and cardio protection. Biochim Biophys Acta Bioenerg 1859(9):940–950. https://doi.org/10.1016/j.bbabio.2018.05.019 (Epub 2018 May 31 PMID: 29859845)

    Article  CAS  PubMed  Google Scholar 

  • Dark J (2005) Annual lipid cycles in hibernators: integration of physiology and behavior. Annu Rev Nutr 25:469–497. https://doi.org/10.1146/annurev.nutr.25.050304.092514

    Article  CAS  PubMed  Google Scholar 

  • Eddy SF, Storey KB (2003) Differential expression of Akt, PPAR gamma, and PGC-1 during hibernation in bats. Biochem Cell Biol

  • Fedorov VB, Goropashnaya AV, Tøien O, Stewart NC, Gracey AY, Chang CL, Qin SZ, Pertea G, Quackenbush J, Showe LC, Showe MK, Boyer BB, Barnes BM (2009) Elevated expression of protein biosynthesis genes in liver and muscle of hibernating black bears (Ursus americanus). Physiol Genom 37(2):108–118. https://doi.org/10.1152/physiolgenomics.90398.2008

    Article  CAS  Google Scholar 

  • Folk GE, Larson A, Folk MA (1976) Physiology of hibernating bears. In: Third international conference on bear research and management, Binghamton. International Association on Bear Research and Management, pp 373–380

  • Frayn KN, Humphreys SM, Coppack SW (1995) Fuel selection in white adipose tissue. Proc Nutr Soc 54:177–189. https://doi.org/10.1079/pns19950047

    Article  CAS  PubMed  Google Scholar 

  • Gehring JL, Rigano KS, Evans Hutzenbiler BD, Nelson OL, Robbins CT, Jansen HT (2016) A protocol for the isolation and cultivation of brown bear (Ursus arctos) adipocytes. Cytotechnology 68(5):2177–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    Article  CAS  PubMed  Google Scholar 

  • Geiser F (2013) Hibernation. Curr Biol 23:188–193

    Article  Google Scholar 

  • Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141:317–329

    Article  PubMed  Google Scholar 

  • Hellgren E (1998) Physiology of hibernation in Bears. Ursus 10:467–477

    Google Scholar 

  • Hilderbrand GV, Hanley TA, Robbins CT, Schwartz CC (1999) Role of brown bears (Ursus arctos) in the flow of marine nitrogen into a terrestrial ecosystem. Oecologia 121:546–550

    Article  CAS  PubMed  Google Scholar 

  • Hissa R, Siekkinen J, Hohtola E, Saarela S, Hakala A, Pudas J (1994) Seasonal patterns in the physiology of the European brown bear (Ursus arctos arctos) in Finland. Comp Biochem Phys A 109(3):781–791

    Article  CAS  Google Scholar 

  • Hissa R, Hohtola E, Tuomala-Saramäki T, Laine T, Kallio H (1998) Seasonal changes in fatty acids and leptin contents in the plasma of the European brown bear (Ursus arctos arctos). Ann Zool Fenn 35(4):215–224

    Google Scholar 

  • Jansen HT, Leise T, Stenhouse G, Pigeon K, Kasworm W, Teisberg J, Radandt T, Dallmann R, Brown S, Robbins CT (2016) The bear circadian clock doesn’t ‘sleep’ during winter dormancy. Front Zool 13(1):1–16. https://doi.org/10.1186/s12983-016-0173-x

    Article  Google Scholar 

  • Jansen HT, Trojahn S, Saxton MW, Quackenbush CR, Evans Hutzenbiler BD, Nelson OL, Cornejo OE, Robbins CT, Kelley JL (2019) Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Commun Biol. 2:336. https://doi.org/10.1038/s42003-019-0574-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen HT, Evans Hutzenbiler B, Hapner HR, McPhee ML, Carnahan AM, Kelley JL, Saxton MW, Robbins CT (2021) Can offsetting the energetic cost of hibernation restore an active season phenotype in grizzly bears (Ursus arctos horribilis)? J Exp Biol. https://doi.org/10.1101/2021.03.12.435162

    Article  PubMed  Google Scholar 

  • Jones JD, Burnett P, Zollman P (1999) The glyoxylate cycle: does it function in the dormant or active bear? Comp Biochem Phys B 124(2):177–179. https://doi.org/10.1016/S0305-0491(99)00109-1

    Article  CAS  Google Scholar 

  • Joseph A-M, Joanisse DR, Baillot RG, Hood DA (2012) Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. J Diab Res. https://doi.org/10.1155/2012/642038

    Article  Google Scholar 

  • Kamine A, Shimozuru M, Shibata H, Tsubota T (2012) Effects of intramuscular administration of tiletamine-zolazepam with and without sedative pretreatment on plasma and serum biochemical values and glucose tolerance test results in Japanese black bears (Ursus thibetanus japonicus) Akari. Am J Vet Res 73

  • Khunderyakova NV, Zakharova NM (2020) Activities of succinate dehydrogenase and lactate dehydrogenase in blood lymphocytes in Yakut ground squirrels Spermophilus undulatus during hibernation and in the active state. Bull Exp Biol Med 169:445–449

    Article  CAS  PubMed  Google Scholar 

  • Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci 107(5):2037–2042. https://doi.org/10.1073/pnas.0914433107

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23:201–229

    Article  CAS  PubMed  Google Scholar 

  • McCain S, Ramsay E, Kirk C (2013) The effects of hibernation and captivity on glucose metabolism and thyroid hormones in American black bear (Ursus Americanus). J Zoo Wildl Med 44:324–332

    Article  PubMed  Google Scholar 

  • Meijssen S, Cabezas MC, Ballieux CG, Derksen RJ, Bilecen S, Erkelens DW (2001) Insulin mediated inhibition of hormone sensitive lipase activity in vivo in relation to endogenous catecholamines in healthy subjects. J Clin Endocrinol Metab 86(9):4193–4197. https://doi.org/10.1210/jcem.86.9.7794 (PMID: 11549649)

    Article  CAS  PubMed  Google Scholar 

  • Mookerjee SA, Nicholls DG, Brand MD (2016) Determining maximum glycolytic capacity using extracellular flux measurements. PLoS ONE 11(3):e0152016. https://doi.org/10.1371/journal.pone.0152016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mookerjee SA, Gerencser AA, Nicholls DG, Brand MD (2017) Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J Biol Chem 292:7189–7207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison S, McGee SL (2015) 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages. Adipocyte 4(4):295–302. https://doi.org/10.1080/21623945.2015.1040612 (PMID: 26451286; PMCID: PMC4573194)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson RA (1973) Winter sleep in the black bear: a physiologic and metabolic marvel. Mayo Clin Proc 48:733–737

    CAS  PubMed  Google Scholar 

  • Nelson RA, Folk GE, Pfeiffer EW, Craighead JJ, Jonkel CJ, Steiger DL (1983) Behavior, biochemistry, and hibernation in black, grizzly and polar bears. In: International conference on bear research and management, Madison, pp 284–290

  • Nelson OL, McEwen M-M, Robbins CT, Felicetti L, Christensen WF (2003) Evaluation of cardiac function in active and hibernating grizzly bears. J Am Vet Med Assoc 223:1170–1175

    Article  PubMed  Google Scholar 

  • Palumbo PJ, Wellik DL, Bagley NA, Nelson RA (1983) Insulin and glucagon responses in the hibernating black bear. Int C Bear 5:291–296

    Google Scholar 

  • Pessin JE, Thurmond DC, Elmendorf JS, Coker KJ, Okada S (1999) Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. J Biol Chem 274(5):2593–2596

    Article  CAS  PubMed  Google Scholar 

  • Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1(7285):785–789. https://doi.org/10.1016/S0140-6736(63)91500-9 (PMID13990765)

    Article  CAS  PubMed  Google Scholar 

  • Rigano KS et al (2017) Life in the fat lane: seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears. J Comp Physiol B Biochem Syst Environ Physiol 187:649–676

    Article  CAS  Google Scholar 

  • Rode K, Robbins C, Shipley L (2001) Constraints on herbivory by grizzly bears. Oecologia 128:62–71. https://doi.org/10.1007/s004420100637

    Article  PubMed  Google Scholar 

  • Schwartz CC, Fortin JK, Teisberg JE, Haroldson MA, Servheen C, Robbins CT, Van Manen FT (2014) Body and diet composition of sympatric black and grizzly bears in the Greater Yellowstone Ecosystem. J Wild Manag 78:68–78. https://doi.org/10.1002/jwmg.633

    Article  Google Scholar 

  • Shimozuru M, Nagashima A, Tanaka J, Tsubota T (2016) Seasonal changes in the expression of energy metabolism-related genes in white adipose tissue and skeletal muscle in female Japanese black bears. Comp Biochem Physiol B Biochem Mol Biol 2016(196–197):38–47. https://doi.org/10.1016/j.cbpb.2016.02.001 (Epub Feb 12 PMID: 26880364)

    Article  CAS  Google Scholar 

  • Sikes RS, Gannon WH, and the Animal Care and Use Committee of the American Society of Mammologists (2011) Guidelines of the American Society of Mammologists for the use of wild mammals in research. J Mammal 92:235–253

    Article  Google Scholar 

  • Sokolov SS, Balakireva AV, Markova OV, Severin FF (2015) Negative feedback of glycolysis and oxidative phosphorylation: mechanisms of and reasons for it. Biochemistry (mosc) 80(5):559–564. https://doi.org/10.1134/S0006297915050065 (PMID: 26071773)

    Article  CAS  Google Scholar 

  • Stenvinkel P et al (2013) Metabolic changes in summer active and anuric hibernating free-ranging brown bears (Ursus arctos). PLoS ONE 8:72934

    Article  Google Scholar 

  • Storey KB (1997) Metabolic regulation in mammalian hibernation: enzyme and protein adaptations. Comp Biochem Physiol, A Comp Physiol 118:1115–1124

    Article  CAS  Google Scholar 

  • Storey K, Storey J (1990) Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q R Biol 65:145–174

    Article  CAS  Google Scholar 

  • Tøien Ø, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331:906–909

    Article  PubMed  Google Scholar 

  • van Breukelen F, Martin SL (2001) Translational initiation is uncoupled from elongation at 18 degrees C during mammalian hibernation. Am J Physiol Regul Integr Comp Physiol 281:R1374–R1379

    Article  PubMed  Google Scholar 

  • van Breukelen F, Martin SL (2002) Reversible depression of transcription during hibernation. J Comp Physiol B Biochem Syst Environ Physiol 172:355–361

    Article  Google Scholar 

  • Vella CA, Nelson OL, Jansen HT, Robbins CT, Jensen AE, Constantinescu S, Abbott MJ, Turcotte LP (2020) Regulation of metabolism during hibernation in brown bears (Ursus arctos): involvement of cortisol, PGC-1α and AMPK in adipose tissue and skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol 240:110591. https://doi.org/10.1016/j.cbpa.2019.110591 (Epub 2019 Oct 25 PMID: 31669707)

    Article  CAS  PubMed  Google Scholar 

  • Welinder KG et al (2016) Biochemical foundations of health and energy conservation in hibernating free-ranging Subadult Brown Bear Ursus arctos*. J Biol Chem 291(43):22509–22523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijenayake S, Tessier SN, Storey KB (2017) Regulation of pyruvate dehydrogenase (PDH) in the hibernating ground squirrel, (Ictidomys tridecemlineatus). J Therm Biol 69:199–205. https://doi.org/10.1016/j.jtherbio.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  • Wilson-Fritch L, Nicoloro S, Chouinard M, Lazar MA, Chui PC, Leszyk J, Straubhaar J, Czech MP, Corvera S (2004) Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 114(9):1281–1289. https://doi.org/10.1172/JCI21752 (PMID:15520860;PMCID:PMC524228)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are endlessly grateful to the many volunteers and supervisors working at the WSU Bear Center and to Jessie McCleary, Nina Woodford, and Gaylynn Clyde of the WSU Office of the Campus Veterinarian for helping to make this research possible. Thank you to Michael Saxton for his adipocyte transcription contributions. Thank you to Marina Savenkova for technical and moral support.

Funding

Funding was obtained from the International Association for Bear Research and Management.

Author information

Authors and Affiliations

Authors

Contributions

HTJ and CTR obtained funding; HRHH, BDEH, and HTJ designed the study; HTJ, CTR, BDEH, and HRHH performed the blood and tissue sampling; HRHH and BDEH performed the metabolic flux analyses, lactate, pyruvate, and lipolysis measurements; HRHH, BDEH, and HTJ analyzed the data; The first draft of the manuscript was written by HRHH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hannah R. Hapner Hogan or Heiko T. Jansen.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics approval

IACUC ASAF #6546.

Additional information

Communicated by G. Heldmaier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hogan, H.R.H., Hutzenbiler, B.D.E., Robbins, C.T. et al. Changing lanes: seasonal differences in cellular metabolism of adipocytes in grizzly bears (Ursus arctos horribilis). J Comp Physiol B 192, 397–410 (2022). https://doi.org/10.1007/s00360-021-01428-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-021-01428-z

Keywords

Navigation