Skip to main content
Log in

Effects of temperature on the locomotor performance and contraction properties of skeletal muscle from two Phrynocephalus lizards at high and low altitude

  • Original paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Locomotor performance and skeletal muscle contraction are critical for animals and are susceptible to changes in the external thermal environment, especially for ectotherms. Phrynocephalus erythrurus, which is endemic to the Qinghai–Tibetan plateau, is known for living at the highest elevation among all reptiles in the world (4500–5300 m). In this study, which compares P. erythrurus with the lowland Phrynocephalus przewalskii, we evaluated the locomotor performance at different body temperatures, the effects of temperature and oxygen partial pressure (PO2) on the contractile properties of iliofibularis (IF) muscle in vitro, ATPase activity of IF muscle at different temperatures, and the fiber types of IF muscle. Lowland P. przewalskii runs significantly faster than highland P. erythrurus at all test body temperatures. Almost all contractile properties of the IF muscle of P. przewalskii were better than that of P. erythrurus under all test temperatures and PO2. However, P. erythrurus could achieve both optimal isometric (e.g., dPo/dt) and optimal isotonic (e.g., Vmax) contraction at a lower temperature compared with P. przewalskii. Multi-factor analysis further revealed that temperature has a significant effect on the contractile properties of IF muscle for both species. Although the proportion of fibers types and ATPase activities of IF muscle have no significant interspecies difference, the changing pattern of ATPase activities with temperature is consistent with certain contractile properties and locomotor performance. The interspecies differences in locomotor ability and contractile properties of skeletal muscle in high- and low-altitude lizards may be the results of long-term adaptation to the local environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IF muscle:

Iliofibularis muscle

P t :

Maximal twitch tension

TPT:

Time-to-peak twitch tension

1/2 RT :

Time of half relaxation from peak twitch tension

P o :

Tetanic tension

dP o/dt :

Maximum rate of rise in tetanic tension

P/m :

Maximal power output

V max :

Maximal velocity of shortening

PO2 :

Oxygen partial pressure

References

  • Alés RG, Acosta JC, Astudillo V, Córdoba M, Blanco GM, Miles D (2018) Effect of temperature on the locomotor performance of species in a lizard assemblage in the Puna region of Argentina. J Comp Physiol B 188:977–990

    Article  CAS  Google Scholar 

  • Bárány M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50:197–218

    Article  PubMed Central  Google Scholar 

  • Bennett AF (1985) Temperature and muscle. J Exp Biol 115:333–344

    Article  CAS  PubMed  Google Scholar 

  • Bergmann PJ, Hare-Drubka M (2015) Hindlimb muscle anatomical mechanical advantage differs among joints and stride phases in basilisk lizards. Zoology 118:291–298

    Article  PubMed  Google Scholar 

  • Bonine KE, Gleeson TT, Garland T Jr (2001) Comparative analysis of fiber-type composition in the iliofibularis muscle of phrynosomatid lizards (Squamata). J Morphol 250:265–280

    Article  CAS  PubMed  Google Scholar 

  • Bonine KE, Gleeson TT, Garland T (2005) Muscle fiber-type variation in lizards (Squamata) and phylogenetic reconstruction of hypothesized ancestral states. J Exp Biol 208:4529–4547

    Article  PubMed  Google Scholar 

  • Brenner B, Eisenberg E (1986) Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution. Proc Natl Acad Sci USA 83:3542–3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks GA, Fahey TD, White TP (1996) Exercise physiology: human bioenergetics and its applications. vol Ed. 2. Mayfield publishing company, Mountain View, CA

  • Burke R (2011) Motor units: anatomy, physiology, and functional organization. Comprehensive Physiology:345–422

  • Calsbeek R, Cox RM (2010) Experimentally assessing the relative importance of predation and competition as agents of selection. Nature 465:613–616

    Article  CAS  PubMed  Google Scholar 

  • Chaillou T (2018) Skeletal muscle fiber type in hypoxia: adaptation to high-altitude exposure and under conditions of pathological hypoxia. Front Physiol 9:1450

    Article  PubMed  PubMed Central  Google Scholar 

  • Christian KA, Tracy CR (1981) The effect of the thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal. Oecologia 49:218–223

    Article  PubMed  Google Scholar 

  • El-Khoury R, O’Halloran K, Bradford A (2003) Effects of chronic hypobaric hypoxia on contractile properties of rat sternohyoid and diaphragm muscles. Clin Exp Pharmacol Physiol 30:551–554

    Article  CAS  PubMed  Google Scholar 

  • El-Khoury R, Bradford A, O’Halloran KD (2012) Chronic hypobaric hypoxia increases isolated rat fast-twitch and slow-twitch limb muscle force and fatigue. Physiol Res 61:195–201

    Article  CAS  PubMed  Google Scholar 

  • Esau SA (1989) Hypoxic, hypercapnic acidosis decreases tension and increases fatigue in hamster diaphragm muscle in vitro. Am Rev Respir Dis 6:1410–1417

    Article  Google Scholar 

  • Gilbert AL, Miles DB (2017) Natural selection on thermal preference, critical thermal maxima and locomotor performance. Proceedings of the Royal Society b: Biological Sciences 284:20170536

    Article  PubMed  PubMed Central  Google Scholar 

  • Gleeson TT, Johnston IA (1987) Reptilian skeletal muscle: contractile properties of identified, single fast-twitch and slow fibers from the lizard Dipsosaurus dorsalis. J Exp Zool 242:283–290

    Article  CAS  PubMed  Google Scholar 

  • Godt RE, Lindley BD (1982) Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog. J Gen Physiol 80:279–297

    Article  CAS  PubMed  Google Scholar 

  • Herrel A, James RS, Van Damme R (2007) Fight versus flight: physiological basis for temperature-dependent behavioral shifts in lizards. J Exp Biol 210:1762–1767

    Article  CAS  PubMed  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond 126:136–195

    Google Scholar 

  • Hou TT, Johnson JD, Rall JA (1992) Effect of temperature on relaxation rate and Ca2+, Mg2+ dissociation rates from parvalbumin of frog muscle fibres. J Physiol 449:399–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihara A, Itoh K, Itoh M, Hirofuji C (2000) Effect of hypobaric hypoxia on rat soleus muscle fibers and their innervating motoneurons: a review. Jpn J Physiol 50:561–568

    Article  CAS  PubMed  Google Scholar 

  • James RS (2013) A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle. J Comp Physiol B Biochem Syst Environ Physiol 183:723–733

    Article  Google Scholar 

  • Jin YT, Liu NF (2010) Phylogeography of Phrynocephalus erythrurus from the Qiangtang Plateau of the Tibetan Plateau. Mol PhyloGenet Evol 54:933–940

    Article  PubMed  Google Scholar 

  • Josephson RK (1993) Contraction dynamics and power output of skeletal muscle. Annu Rev Physiol 55:527–546

    Article  CAS  PubMed  Google Scholar 

  • Lewis P, McMorrow C, Bradford A, O’Halloran KD (2015) Improved tolerance of acute severe hypoxic stress in chronic hypoxic diaphragm is nitric oxide-dependent. J Physiol Sci 65:427–433

    Article  CAS  PubMed  Google Scholar 

  • Lewis P, Sheehan D, Soares R, Coelho AV, O’Halloran KD (2016) Redox remodeling is pivotal in murine diaphragm muscle adaptation to chronic sustained hypoxia. Am J Respir Cell Mol Biol 55:12–23

    Article  CAS  PubMed  Google Scholar 

  • Li XT et al (2017) The Cold Hardiness of Phrynocephalus erythrurus, the Lizard Living at Highest Altitude in the World. CryoLett 38:216–227

    CAS  Google Scholar 

  • Lieber RL, Fridén J (2015) Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23:1647–1666

    Article  Google Scholar 

  • Lind A, Kernell D (1991) Myofibrillar ATPase histochemistry of rat skeletal muscles: a “two-dimensional” quantitative approach. J Histochem Cytochem 39:589–597

    Article  CAS  PubMed  Google Scholar 

  • Losos J (1990) The evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards. Evolution 44:1189–1203

    Article  PubMed  Google Scholar 

  • Lui MA et al (2015) High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice. Am J Physiol Regul Integr Comp Physiol 308:R779–R791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machiels HA, Hf VDH, Heunks LM, Dekhuijzen PN (2010) The effect of hypoxia on shortening contractions in rat diaphragm muscle. Acta Physiol 173:313–321

    Article  Google Scholar 

  • Marsh RL, Bennett AF (1985) Thermal dependence of isotonic contractile properties of skeletal muscle and sprint performance of the lizard Dipsosaurus dorsalis. J Comp Physiol B 155:541

    Article  CAS  PubMed  Google Scholar 

  • Marsh RL, Bennett AF (1986) Thermal dependence of contractile properties of skeletal muscle from the lizard Sceloporus occidentalis with comments on methods for fitting and comparing force-velocity curves. J Exp Biol 126:63–77

    Article  CAS  PubMed  Google Scholar 

  • Miles DB, Calsbeek R, Sinervo B (2007) Corticosterone, locomotor performance, and metabolism in side-blotched lizards (Uta stansburiana). Horm Behav 51:548–554

    Article  CAS  PubMed  Google Scholar 

  • Putnam RW, Bennett AF (1982) Thermal dependence of isometric contractile properties of lizard muscle. J Comp Physiol 147:11–20

    Article  Google Scholar 

  • Ranatunga KW (2018) Temperature effects on force and actin–myosin interaction in muscle: a look back on some experimental findings. Int J Mol Sci 19:1538

    Article  PubMed Central  CAS  Google Scholar 

  • Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD (1995) Myoglobin O2 desaturation during exercise. evidence of limited O2 transport. Jclininvest 96:1916–1926

    CAS  Google Scholar 

  • Rome LC, Sosnicki AA, Goble DO (1990) Maximum velocity of shortening of three fibre types from horse soleus muscle: implications for scaling with body size. J Physiol 431:173–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saltin B, Gollnick PD (1983) Skeletal muscle adaptability: significance for metabolism and performance. In: Peach LO (ed) Handbook of physiology. American Physiological Society, Bethesda, pp 555–631

  • Scott GR, Egginton S, Richards JG, Milsom WK (2009) Evolution of muscle phenotype for extreme high altitude flight in the bar-headed goose. Proc R Soc B Biol Sci 276:3645–3653

    Article  Google Scholar 

  • Scott GR, Elogio TS, Lui MA, Storz JF, Cheviron ZA (2015) Adaptive modifications of muscle phenotype in high-altitude deer mice are associated with evolved changes in gene regulation. Mol Biol Evol 32:1962–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein RB, Gordon T, Shriver J (1982) Temperature dependence of mammalian muscle contractions and ATPase activities. Biophys J 40:97–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swoap SJ, Johnson TP, Josephson RK, Bennett AF (1993) Temperature, muscle power output and limitations on burst locomotor performance of the lizard Dipsosaurus dorsalis. J Exp Biol 174:185–197

    Article  Google Scholar 

  • Winchell K, Maayan I, Fredette J, Revell L (2018) Linking locomotor performance to morphological shifts in urban lizards. Proc R Soc B 285:20180229

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Dang W, Hu YC, Lu HL (2018) Altitude influences thermal ecology and thermal sensitivity of locomotor performance in a toad-headed lizard. J Therm Biol 71:136–141

    Article  PubMed  Google Scholar 

  • Yan Z, Okutsu M, Akhtar YN, Lira VA (2011) Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol 110:264–274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Wangjie Cao, Xingwen Yang and Yaofeng Zhao for their support and help in this study.

Funding

Research funding was supported by the National Natural Science Foundation of China (NO. 31971416 and NO. 31472005 to Q. Chen) and the Fundamental Research Funds for the Central Universities (lzujbky-2017-150 to X. Tang) and Project funded by China Postdoctoral Science Foundation (2021M691380 to H. Wang).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: QCh, ZhN, ML; methodology: ZhN, ML, PP; software: ZhN, PP, TZh; formal analysis: ZhN, PP, TZh, HW; investigation: QCh, ZhN, XT, TZh; resources: QCh, XT; data curation: QCh, YZh, ML; writing-original draft: ZhN, ML, PP; writing review and editing: QCh, XT, PP, ZhN, ML; visualization: PP, ZhN, ML; supervision: QCh, XT; project administration: QCh; funding acquisition: QCh, XT.

Corresponding authors

Correspondence to Xiaolong Tang or Qiang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by P. Withers.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Z., Li, M., Pu, P. et al. Effects of temperature on the locomotor performance and contraction properties of skeletal muscle from two Phrynocephalus lizards at high and low altitude. J Comp Physiol B 191, 907–916 (2021). https://doi.org/10.1007/s00360-021-01391-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-021-01391-9

Keywords

Navigation