Cortisol and glucocorticoid receptor 2 regulate acid secretion in medaka (Oryzias latipes) larvae

Abstract

Freshwater fish live in environments where pH levels fluctuate more than those in seawater. During acidic stress, the acid–base balance in these fish is regulated by ionocytes in the gills, which directly contact water and function as an external kidney. In ionocytes, apical acid secretion is largely mediated by H+-ATPase and the sodium/hydrogen exchanger (NHE). Control of this system was previously proposed to depend on the hormone, cortisol, mostly based on studies of zebrafish, a stenohaline fish, which utilize H+-ATPase as the main route for apical acid secretion. However, the role of cortisol is poorly understood in euryhaline fish species that preferentially use NHE as the main transporter. In the present study, we explored the role of cortisol in NHE-mediated acid secretion in medaka larvae. mRNA expression levels of transporters related to acid secretion and cortisol-synthesis enzyme were enhanced by acidic FW treatment (pH 4.5, 2 days) in medaka larvae. Moreover, exogenous cortisol treatment (25 mg/L, 2 days) resulted in upregulation of nhe3 and rhcg1 expression, as well as acid secretion in 7 dpf medaka larvae. In loss-of-function experiments, microinjection of glucocorticoid receptor (GR)2 morpholino (MO) caused reductions in nhe3 and rhcg1 expression and diminished acid secretion, but microinjection of mineralocorticoid receptor (MR) and GR1 MOs did not. Together, these results suggest a conserved action of cortisol and GR2 on fish body fluid acid–base regulation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Al-FiFi ZIA (2006) Studies of some molecular properties of the vacuolar H+-ATPase in rainbow trout (Oncorhynchus mykiss). Biotechnology 5(4):455–560

    CAS  Article  Google Scholar 

  2. Aruna A, Nagarajan G, Chang CF (2012) Differential expression patterns and localization of glucocorticoid and mineralocorticoid receptor transcripts in the osmoregulatory organs of tilapia during salinity stress. Gen Comp Endocrinol 179(3):465–476

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. Baker ME (2003) Evolution of glucocorticoid and mineralocorticoid responses: go fish. Endocrinology 144:4223–4225

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. Brown SB, Eales JG, Hara TJ (1986) A protocol for estimation of cortisol plasma clearance in acid-exposed rainbow trout (Salmo gairdneri). Gen Comp Endocrinol 62:493–502

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. Bury NR, Sturm A, Le Rouzic P, Lethimonier C, Ducouret B, Guiguen Y, Robinson-Rechavi M, Laudet V, Rafestin-Oblin ME, Prunet P (2003) Evidence for two distinct functional glucocorticoid receptors in teleost fish. J Mol Endocrinol 31:141–156

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Chang WJ, Hwang PP (2011) Development of zebrafish epidermis. Birth Defects Res C Embryo Today 93(3):205–214

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. Cruz SA, Chao PL, Hwang PP (2013a) Cortisol promotes differentiation of epidermal ionocytes through Foxi3 transcription factors in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 164:249–257

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. Cruz SA, Lin CH, Chao PL, Hwang PP (2013b) Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish (Danio rerio). PLoS ONE 8(10):e77997

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. Furukawa F, Watanabe S, Inokuchi M, Kaneko T (2011) Responses of gill mitochondria-rich cells in Mozambique tilapia exposed to acidic environments (pH 4.0) in combination with different salinities. Comp Biochem Physiol A Mol Integr Physiol 158:468–476

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  11. Galvez F, Reid SD, Hawkings G, Goss GG (2002) Isolation and characterization of mitochondria-rich cell types from the gill of freshwater rainbow trout. Am J Physiol Regul Integr Comp Physiol 282:R658–R668

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. Gilmour KM, Collier CL, Dey CJ, Perry SF (2011) Roles of cortisol and carbonic anhydrase in acid–base compensation in rainbow trout, Oncorhynchus mykiss. J Comp Physiol B 181(4):501–515

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Greenwood AK, Butler PC, White RB, DeMarco U, Pearce D, Fernald RD (2003) Multiple corticosteroid receptors in a teleost fish: distinct sequences, expression patterns, and transcriptional activities. Endocrinology 144:4226–4236

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Hirata T, Kaneko T, Ono T, Nakazato T, Furukawa N, Hasegawa S, Wakabayashi S, Shigekawa M, Chang MH, Romero MF, Hirose S (2003) Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol Regul Integr Comp Physiol 284:R1199–R1212

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. Horng JL, Lin LY, Huang CJ, Katoh F, Kaneko T, Hwang PP (2007) Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 292:R2068–R2076

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Hsiao CD, You MS, Guh YJ, Ma M, Jiang YJ, Hwang PP (2007) A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PLoS ONE 2(3):e302

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Hsu HH, Lin LY, Tseng YC, Horng JL, Hwang PP (2014) A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res 357(1):225–243

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Hwang P-P, Chou M-Y (2013) Zebrafish as an animal model to study ion homeostasis. Pflügers Arch Eur J Physiol 465(9):1233–1247. https://doi.org/10.1007/s00424-013-1269-1

    CAS  Article  Google Scholar 

  19. Hwang PP, Perry SF (2010) Ionic and acid–base regulation. In: Perry SF, Ekker M, Farrell AP, Brauner CJ (eds) Fish physiology Vol. 29. Zebrafish. Academic Press, San Diego, pp 311–343

    Google Scholar 

  20. Hwang PP, Lee TH, Lin LY (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 301:R28–R47

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Inokuchi M, Hiroi J, Watanabe S, Hwang PP, Kaneko T (2009) Morphological and functional classification of ion-absorbing mitochondria-rich cells in the gills of Mozambique tilapia. J Exp Biol 212:1003–1010

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. Ito Y, Kato A, Hirata T, Hirose S, Romero MF (2014) Na+/H+ and Na+/NH4+ activities of zebrafish NHE3b expressed in Xenopus oocytes. Am J Physiol Regul Integr Comp Physiol 306:R315–R327

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Ivanis G, Esbaugh AJ, Perry SF (2008) Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss). J Exp Biol 211:2467–2477

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Izumi Y, Hori K, Nakayama Y, Kimura M, Hasuike Y, Nanami M, Kohda Y, Otaki Y, Kuragano T, Obinata M, Kawahara K, Tanoue A, Tomita K, Nakanishi T, Nonoguchi H (2011) Aldosterone requires vasopressin V1a receptors on intercalated cells to mediate acid-base homeostasis. J Am Soc Nephrol 22(4):673–680

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Kiilerich P, Kristiansen K, Madsen SS (2007) Cortisol regulation of ion transporter mRNA in Atlantic salmon gill. J Endocrinol 194:417–427

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Kumai Y, Nesan D, Vijayan MM, Perry SF (2012) Cortisol regulates Na+ uptake in zebrafish, Danio rerio, larvae via the glucocorticoid receptor. Mol Cell Endocrinol 364:113–125

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. Kwon HJ, Bhat N, Sweet EM, Cornell RA, Riley BB (2010) Identification of early requirements for preplacodal ectoderm and sensory organ development. PLoS Genet 6:e1001133

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. Lee YC, Yang JJ, Cruze S, Horng JL, Hwang PP (2011) Anion exchanger 1b, but not sodium-bicarbonate cotransporter 1b, plays a role in transport functions of zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol 300:C295–C307

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. Lin CH, Hwang PP (2016) The control of calcium metabolism in Zebrafish (Danio rerio). Int J Mol Sci 17:1783

    PubMed Central  Article  CAS  Google Scholar 

  30. Lin H, Randall DJ (1993) Proton-ATPase activity in crude homogenates of fish gill tissue: inhibitor sensitivity and environmental and hormonal regulation. J Exp Biol 180:163–174

    CAS  Article  Google Scholar 

  31. Lin GR, Weng CF, Wang JI, Hwang PP (1999) Effectsof cortisol on ion regulation in developing tilapia (Oreochromis mossambicus) larvae. Physiol Biochem Zool 72:397–404

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Lin LY, Horng JL, Kunkel JG, Hwang PP (2006) Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290:C371–C378

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Lin CH, Tsai IL, Su CH, Tseng DY, Hwang PP (2011) Reverse effect of mammalian hypocalcemic cortisol in fish: cortisol stimulates Ca2+ uptake via glucocorticoid receptor-mediated vitamin D3 metabolism. PLoS ONE 6:e23689

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Lin CC, Lin LY, Hsu HH, Thermes V, Prunet P, Horng JL, Hwang PP (2012) Acid secretion by mitochondrion-rich cells of medaka (Oryzias latipes) acclimated to acidic freshwater. Am J Physiol Regul Integr Comp Physiol 302(2):R283–R291

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Lin CH, Shih TH, Liu ST, Hsu HH, Hwang PP (2015) Cortisol regulates acid secretion of H+-ATPase-richionocytes in zebrafish (Danio rerio) embryos. Front Physiol 6:328

    PubMed  PubMed Central  Article  Google Scholar 

  36. Lin CH, Hu HJ, Hwang PP (2016) Cortisol regulates sodium homeostasis by stimulating the transcriptionof sodium-chloride transporter (NCC) in zebrafish (Danio rerio). Mol Cell Endocrinol 422:93–102

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Liu ST, Horng JL, Chen PY, Hwang PP, Lin LY (2016) Salt secretion is linked to acid-base regulation of ionocytes in seawater-acclimated Medaka: new insights into the salt-secreting mechanism. Sci Rep 6:31433

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Nelson DR (2003) Comparison of P450s from human and fugu: 420 million years of vertebrate P450 evolution. Arch Biochem Biophys 409:18–24

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. Nesan D, Kamkar M, Burrows J, Scott IC, Marsden M, Vijayan MM (2012) Glucocorticoid receptor signaling is essential for mesoderm formation and muscle development in zebrafish. Endocrinology 153:1288–1300

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. Perry SF, Gilmour KM (2006) Acid–base balance and CO2 excretion in fish: unanswered questions and emerging models. Respir Physiol Neurobiol 154:199–215

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. Shih TH, Horng JL, Hwang PP, Lin LY (2008) Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol 295:C1625–C1632

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. Shih TH, Horng JL, Liu ST, Hwang PP, Lin LY (2012) Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water. Am J Physiol Regul Integr Comp Physiol 302:R84-93

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. Sturm A, Bury NR, Dengreville L, Fagart J, Flouriot G, Rafestin-Oblin ME, Prunet P (2005) 11-Deoxycorticosterone is a potentagonist of the rainbow trout (Oncorhynchus mykiss) mineralocorticoid receptor. Endocrinology 146:47–55

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. Trayer V, Hwang PP, Prunet P, Thermes V (2013) Assessment of the role of cortisol and corticosteroid receptors in epidermal ionocyte development in the medaka (Oryzias latipes) embryos. Gen Comp Endocrinol 194:152–161

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. Tseng YC, Yan JJ, Furukawa F, Hwang PP (2020) Did acidic stress resistance in vertebrates evolve as Na+/H+ exchanger-mediated ammonia excretion in fish? BioEssays 42:e1900161

    PubMed  Article  PubMed Central  Google Scholar 

  46. Wang D, Zhang H, Lang F, Yun CC (2007) Acute activation of NHE3 by dexamethasone correlates with activation of SGK1 and requires a functional glucocorticoid receptor. Am J Physiol Cell Physiol 292(1):C396-404

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. Warren DE, Matsumoto S, Roessig JM, Cech JJ (2004) Cortisol response of green sturgeon to acid-infusion stress. Comp Biochem Physiol A 137:611–618

    Article  CAS  Google Scholar 

  48. Wood CM, Milligan CL, Walsh PJ (1999) Renal responses of trout to chronic respiratory and metabolic acidoses and metabolic alkalosis. Am J Physiol 277:R482–R492

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu SC, Horng JL, Hwang PP, Wen ZH, Lin CS, Lin LY (2010) Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol Cell Physiol 298:C237-250

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. Yan JJ, Hwang PP (2019) Novel discoveries in acid-base regulation and osmoregulation: a review of selected hormonal actions in zebrafish and medaka. Gen Comp Endocrinol 277:20–29

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. Yan JJ, Chou MY, Kaneko T, Hwang PP (2007) Gene expression of Na+/H+ exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am J Physiol Cell Physiol 293:C1814–C1823

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants (to PPH and CHL) from the Ministry of Science and Technology of Taiwan (MOST107-2326-B-001-007 and MOST109-2313-B-992- 003-MY3)

Author information

Affiliations

Authors

Contributions

CHL and PPH were involved in conception and study design; CHL, HJH, HJC, and YLT carried out the experiments and data collection; CHL, HJH, HJC, and PPH did the data analysis and interpretation; CHL and PPH wrote the manuscript; All the authors reviewed and revised the manuscript, and gave final approval for publication.

Corresponding authors

Correspondence to Chia-Hao Lin or Pung-Pung Hwang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical approval

All applicable national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by B. Pelster.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, CH., Hu, HJ., Chuang, HJ. et al. Cortisol and glucocorticoid receptor 2 regulate acid secretion in medaka (Oryzias latipes) larvae. J Comp Physiol B (2021). https://doi.org/10.1007/s00360-021-01390-w

Download citation

Keywords

  • NHE3
  • Acid secretion
  • Ionocytes
  • Cortisol
  • Medaka