Skip to main content
Log in

Metabolic scaling: individual versus intraspecific scaling of Nile tilapia (Oreochromis niloticus)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

We examined intraspecific scaling of the resting metabolic rate (RMR) of Nile tilapia (Oreochromis niloticus) under different culture conditions and further explored the allometric relationships between organ mass (heart, liver, brain, gills, viscera, and red muscles) and blood parameters (erythrocyte size and red blood cell counts) and body mass. Oreochromis niloticus were bred in individual and group cultures. The scaling exponent of the RMR in the individual cultures was b = 0.620–0.821 (n = 30) and that in the group culture was b = 0.770 [natural logarithm (ln) RMR = 0.770 ln M − 1.107 (n = 76)]. The results of the two experimental methods were similar and were not significantly different from 0.75 (3/4), as predicted by the metabolic theory of ecology. The active and inactive organs were scaled with body mass by an exponent of 0.940 and 1.012, respectively. There was no significant relationship between the blood parameters and body mass. These results suggest that the differences in the culture methods may not have affected the allometric scaling of O. niloticus metabolism. The proportion of active and inactive organs contributed to allometric changes in the metabolic rate with body mass. Red blood cells in fish are not generally representative, and cell size can only partially explain the allometric scaling of metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4

Similar content being viewed by others

References

  • Agutter PS, Tuszynski JA (2011) Analytic theories of allometric scaling. J Exp Biol 214(7):1055–1062

    Article  PubMed  Google Scholar 

  • Blaikie HB, Kerr SR (1996) Effect of activity level on apparent heat increment in Atlantic cod, Gadus morhua. Can J Fish Aquat Sci 53:2093–2099

    Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Daan S, Masman D, Strijkstra A, Verhulst S (1989) Intraspecific allometry of basal metabolic rate: relations with body size, temperature, composition, and circadian phase in the kestrel, Falco tinnunculus. J Biol Rhythms 4(2):267–283

    Article  CAS  PubMed  Google Scholar 

  • Darveau CA, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417:166–170

    Article  CAS  PubMed  Google Scholar 

  • Davison J (1955) Body weight, cell surface and metabolic rate in Anuran Amphibia. Biol Bull 109:407–419

    Article  Google Scholar 

  • Feldman HA, Mcmahon TA (1983) The 3/4 mass exponent for energy metabolism is not a statistical artifact. Respir Physiol 52(2):149–163

    Article  CAS  PubMed  Google Scholar 

  • Glazier DS (2005) Beyond the ‘3/4-power law’: variation in the intra-and interspecific scaling of metabolic rate in animals. Biol Rev 80(4):611–662

    Article  PubMed  Google Scholar 

  • Glazier DS (2008) Effects of metabolic level on the body size scaling of metabolic rate in birds and mammals. Proc R Soc B 275:1405–1410

    Article  PubMed  PubMed Central  Google Scholar 

  • Glazier DS (2010a) A unifying explanation for diverse metabolic scaling in animals and plants. Biol Rev 85(1):111–138

    Article  PubMed  Google Scholar 

  • Glazier DS (2010b) Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev Camb Philos Soc 80(04):611–662

    Article  Google Scholar 

  • Glazier DS (2010c) A unifying explanation for diverse metabolic scaling in animals and plants. Biol Rev 85:111–138

    Article  PubMed  Google Scholar 

  • Glazier DS (2014) Scaling of metabolic scaling within physical limits. Systems 2:425–450

    Article  Google Scholar 

  • Glazier DS (2015) Is metabolic rate a universal ‘pacemaker’ for biological processes? Biol Rev 90:377–407

    Article  PubMed  Google Scholar 

  • Huang QD, Zhang YR, Liu ST, Wang W, Luo YP (2013) Intraspecific scaling of the resting and maximum metabolic rates of the Crucian carp (Carassius auratus). PLoS ONE 8:e82837

    Article  PubMed  PubMed Central  Google Scholar 

  • Itazawa Y, Oikawa S (1983) Metabolic rates in excised tissues of carp. Experientia 39:160–161

    Article  Google Scholar 

  • Killen SS, Costa I, Brown JA, Gamperl AK (2007) Little left in the tank: metabolic scaling in marine teleosts and its implications for aerobic scope. Proc R Soc B 274:431–438

    Article  PubMed  Google Scholar 

  • Killen SS, Atkinson D, Glazier DS (2010) The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol Lett 13:184–193

    Article  PubMed  Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353

    Article  CAS  Google Scholar 

  • Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27:511–541

    Article  CAS  PubMed  Google Scholar 

  • Kozłowski J, Konarzewski M, Gawelczyk AT (2003) Cell size as a link between noncoding DNA and metabolic rate scaling. Proc Natl Acad Sci USA 100:14080–14085

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozlowski J, Czarnoleski M, Francois-Krassowska A, Maciak S, Pis T (2010) Cell size is positively correlated between different tissues in passerine birds and amphibians, but not necessarily in mammals. Biol Lett 6(6):792–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvist A, Lindström A (2001) Basal metabolic rate in migratory waders: intra-individual, intraspecific, interspecific and seasonal variation. Funct Ecol 15(4):465–473

    Article  Google Scholar 

  • Lindstrom A, Kvist MK (1999) Variation in energy intake and basal metabolic rate of a bird migrating in a wind tunnel. Funct Ecol 13(3):352–359

    Article  Google Scholar 

  • Liu XH (2007) Biological characteristics and culture techniques of Nile tilapia (Oreochromis niloticus). Hubei Agric Sci 1:115–116

    Google Scholar 

  • Liu GL, Xie QX, Liang L, Zhang ZG, Wang LX, Huang Y, He LJ (2018) The total annual output of tilapia ranks third in the country. Friends Farmers 12:30–31

    Google Scholar 

  • Luo YP, Xie XJ (2008) Effects of temperature on the specific dynamic action of the southern catfish, Silurus meridionalis. Comp Biochem Physiol A 149:150–156

    Article  Google Scholar 

  • Luo YP, He DC, Li G, Xie H, Zhang YR, Huang QD (2015) Intraspecific metabolic scaling exponent depends on red blood cell size in fishes. J Exp Biol 218:1496–1503

    PubMed  Google Scholar 

  • Maciak S, Kostelecka-Myrcha A (2001) Regularities of variation of the red blood indices characterizing the respiratory function of blood in selected fish. Zool Poloniae 56(1–4):35–48

    Google Scholar 

  • Maxwell LK, Jacobson ER, McNab BK (2003) Intraspecific allometry of standard metabolic rate in green iguanas, Iguana iguana. Comp Biochem Physiol A Mol Integr Physiol 136(2):301–310

    Article  PubMed  Google Scholar 

  • McLean JA, Speakman JR (2000) Effects of body mass and reproduction on the basal metabolic rate of brown long-eared bats (Plecotus auritus). Physiol Biochem Zool 73:112–121

    Article  CAS  PubMed  Google Scholar 

  • Norin T, Gamperl AK (2018) Metabolic scaling of individuals vs. populations: evidence for variation in scaling exponents at different hierarchical levels. Funct Ecol 32(2):379–388

    Article  Google Scholar 

  • Ohlberger J, Mehner T, Staaks G, Höker F (2012) Intraspecific temperature dependence of the scaling of metabolic rate with body mass in fishes and its ecological implications. Oikos 121:245–251

    Article  Google Scholar 

  • Oikawa S, Itazawa Y (1993) Tissue respiration and relative growth of parts of body of a marine teleost, porgy Pagrus major, during early life stages with special reference to the metabolism–size relationship. Comp Biochem Physiol A 105:741–744

    Article  Google Scholar 

  • Piersma T, Cadée N, Daan S (1995) Seasonality in basal metabolic rate and thermal conductance in a long-distance migrant shorebird, the knot (Calidris canutus). J Comp Physiol B 165(1):37–45

    Article  Google Scholar 

  • Rombough P (2011) The energetics of embryonic growth. Respir Physiol Neurobiol 178(1):22–29

    Article  PubMed  Google Scholar 

  • Rubner M (1883) Über den einfluss der korpergrosse auf staff-und kraftwechsel. Z Biol 19:536–562

    Google Scholar 

  • Savage VM, Allen AP, Brown JH, Gillooly JF, Herman AB (2007) Scaling of number, size, and metabolic rate of cells with body size in mammals. Proc Natl Acad Sci USA 104:4718–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Nislsen K (1984) Scaling. Why is animal size so important? Cambridge University Press

  • Schmidt-Nielsen K (2002) Scaling: why is animal size so important? Cambridge University Press, New York

    Google Scholar 

  • Scott I, Mitchell PI, Evans PR (1996) How does variation in body composition affect the basal metabolic rate of birds. Funct Ecol 10:307–313

    Article  Google Scholar 

  • Snelling EP, Seymour RS, Matthews PGD, Runciman S, White CR (2011) Scaling of resting and maximum hopping metabolic rate throughout the life cycle of the locust Locusta migratoria. J Exp Biol 214:3218–3224

    Article  PubMed  Google Scholar 

  • Starostová Z, Konarzewski M, Kozłowski J, Kratochvíl L (2013) Ontogeny of metabolic rate and red blood cell size in eyelid geckos: species follow different paths. PLoS ONE 8(5):e64715

    Article  PubMed  PubMed Central  Google Scholar 

  • Steffensen JF (1989) Some errors in respirometry of aquatic breathers: how to avoid and correct for them. Fish Physiol Biochem 6(1):49–59

    Article  CAS  PubMed  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  Google Scholar 

  • White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional to body mass[sup 2/3]. Proc Natl Acad Sci USA 100:4046–4049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White CR, Phillips NF, Seymour RS (2006) The scaling and temperature dependence of vertebrate metabolism. Biol Lett 2(1):125–127

    Article  PubMed  Google Scholar 

  • Yagi M, Kanda T, Takeda T, Ishimatsu A, Oikawa S (2010) Ontogenetic phase shifts in metabolism: links to development and anti-predator adaptation. Proc R Soc B 277:2793–2801

    Article  PubMed  PubMed Central  Google Scholar 

  • Zari TA (1993) Effects of body mass and temperature on standard metabolic rate of the desert chameleon Chamaelo calyptratus. J Arid Environ 24:75–80

    Article  Google Scholar 

  • Zhang YR (2014) Intraspecific mass scaling of metabolic rates in grass carp and common carp. Southwest University

    Google Scholar 

  • Zhang YR, Huang QD, Liu ST, He DC, Wei G, Luo YP (2014) Intraspecific mass scaling of metabolic rates in grass carp (Ctenopharyngodon idellus). J Comp Physiol B 184:347–354

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Start-up Research Grant from Qinzhou University (No. 2017KYQD107), the Research Funds Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation (No. 2018ZB03), the Project of Basic Ability Improvement of Young and Middle-aged Teachers of Universities in Guangxi (No. 2018KY0623), and the Research Funds Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation (No. 2019ZB03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Additional information

Communicated by H. V. Carey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (XLSX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, X., Lu, L., Jiang, M. et al. Metabolic scaling: individual versus intraspecific scaling of Nile tilapia (Oreochromis niloticus). J Comp Physiol B 191, 721–729 (2021). https://doi.org/10.1007/s00360-021-01376-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-021-01376-8

Keywords

Navigation