Skip to main content
Log in

Comparison of metabolic scaling between triploid and diploid common carp

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Ploidy level affects both the cell size and metabolic rate (MR) of organisms. The present study aimed to examine whether ploidy levels cause differences in cell surface area (SA), MR and metabolic scaling. The resting MR (RMR), red blood cell SA (SARBC), red blood cell count (RBCC), gill SA (GSA), and ventilation frequency (VF) were measured in diploid and triploid common carp with different body masses (M). The results showed that both M and ploidy level affected the RMR, GSA, VF, and SARBC, with interactions between M and ploidy level. The triploids had larger SARBC but lower RBCC than those of the diploids. The SARBC increased weakly but significantly with increasing M, by an exponent of 0.043, in the triploids but did not increase in the diploids. The RMR of the triploids and diploids scaled with M, by exponents of 0.696 and 1.007, respectively. The RMR was higher in the triploids than the diploids. The GSA scaled with M, with an exponent of 0.906 in the triploids and an exponent of 1.043 in the diploids. The VF scaled with M by an exponent of − 0.305 in the triploids but showed no correlation with M in the diploids. The larger SARBC and RMR and smaller scaling exponents of both the GSA and VF of the triploids were consistent with the finding that the bR was smaller in the triploids than in the diploids. This suggests that the ploidy-induced changes of SA and SA scaling affect the metabolic scaling of fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be publicly available in figshare: https://doi.org/10.6084/m9.figshare.13621544.

Code availability

Not applicable.

References

  • Aliah RS, Inada Y, Yamaoka K, Taniguchi N (1991) Effects of triploidy on hematological characteristics and oxygen consumption in Ayu. Nippon Suisan Gakkaishi 57(5):833–836

    Article  Google Scholar 

  • BallarinDall’Oro LM, Bertotto D, Libertini A, Francescon A, Barbaro A (2004) Haematological parameters in Umbrina cirrosa (Teleostei, Sciaenidae): a comparison between diploid and triploid specimens. Comp Biochem Physiol A 138(1):45–51

    Article  Google Scholar 

  • Benfey TJ (1999) The physiology and behavior of triploid fishes. Rev Fish Sci 7:39–67

    Article  Google Scholar 

  • Benfey TJ, Sutterlin AM (1984a) Oxygen utilization by triploid landlocked Atlantic salmon (Salmo salar L). Aquaculture 42(1):69–73

    Article  Google Scholar 

  • Benfey TJ, Sutterlin AM (1984b) The haematology of triploid landlocked Atlantic salmon, Salmo solar L. J Fish Biol 24(3):333–338

    Article  CAS  Google Scholar 

  • Benfey TJ, Sutterlin AM, Thompson RJ (1984) Use of erythrocyte measurements to identify triploid salmonids. Can J Fish Aquat Sci 41(6):980–984

    Article  Google Scholar 

  • Biron M, Benfey TJ (1994) Cortisol, glucose and hematocrit changes during acute stress, cohort sampling, and the diel cycle in diploid and triploid brook trout (Salvelinus fontinalis Mitchill). Fish Physiol Biochem 13:153–160

    Article  CAS  PubMed  Google Scholar 

  • Bowden AJ, Andrewartha SJ, Elliott NG, Frappell PB, Clark TD (2018) Negligible differences in metabolism and thermal tolerance between diploid and triploid Atlantic salmon (Salmo salar). J Exp Biol 221(5):1–9

    Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85(7):1771–1789

    Article  Google Scholar 

  • Cherfas NB (1966) Natural triploidy of females of the unisexual form of silver crucian carp (Carassius auratus gibelio Bloch). Genetika 2(5):16–24

    Google Scholar 

  • Choleva L, Janko K (2013) Rise and persistence of animal polyploidy: evolutionary constraints and potential. Cytogenet Genome Res 40(2–4):151–170

    Article  Google Scholar 

  • Cimino MC (1973) Karyotypes and erythrocyte sizes of some diploid and triploid fishes of the genus Poeciliopsis. J Fish Res Board Can 30(11):1736–1737

    Article  Google Scholar 

  • Czarnoleski M, Dragosz-Kluska D, Angilletta MJ (2014) Flies developed smaller cells when temperature fluctuated more frequently. J Therm Biol 54:106–110

    Article  PubMed  Google Scholar 

  • Czarnoleski M, Labecka AM, Kozłowski J (2015) Thermal plasticity of body size and cell size in snails from two subspecies of Cornu aspersum. J Molluscan Stud 82(2):235–243

    Article  Google Scholar 

  • Davison J (1955) Body weight, cell surface and metabolic rate in anuran Amphibia. Biol Bull 109:407–419

    Article  Google Scholar 

  • Davison J (1956) An analysis of cell growth and metabolism in the crayfish (Procambarus alleni). Biol Bull 110:264–273

    Article  Google Scholar 

  • Fox J, Weisberg S (2019) An R companion to applied regression, 3rd edn. Sage, Thousand Oaks, CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/. Accessed 30 June 2020

  • Gillooly JF, Gomez JP, Mavrodiev EV, Rong Y, Mclamore ES (2016) Body mass scaling of passive oxygen diffusion in endotherms and ectotherms. Proc Natl Acad Sci USA 113(19):5340–5345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazier DS (2005) Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev 80:611–662

    Article  PubMed  Google Scholar 

  • Glazier DS (2008) Effects of metabolic level on the body-size scaling of metabolic rate in birds and mammals. Proc Biol Sci 275:1405–1410

    PubMed  PubMed Central  Google Scholar 

  • Glazier DS (2009) Activity affects intraspecific body-size scaling of metabolic rate in ectothermic animals. J Comp Physiol B 179:821–828

    Article  PubMed  Google Scholar 

  • Glazier DS (2010) A unifying explanation for diverse metabolic scaling in animals and plants. Biol Rev 85:111–138

    Article  PubMed  Google Scholar 

  • Glazier DS (2014a) Metabolic scaling in complex living systems. Systems 2:451–540

    Article  Google Scholar 

  • Glazier DS (2014b) Scaling of metabolic scaling within physical limits. Systems 2:425–450

    Article  Google Scholar 

  • Glazier DS (2018) Rediscovering and reviving old observations and explanations of metabolic scaling in living systems. Systems 6:4

    Article  Google Scholar 

  • Glazier DS, Paul DA (2017) Ecology of ontogenetic body-mass scaling of gill surface area in a freshwater crustacean. J Exp Biol 220:2120–2127

    PubMed  Google Scholar 

  • Glazier DS, Hirst AG, Atkinson D (2015) Shape shifting predicts ontogenetic changes in metabolic scaling in diverse aquatic invertebrates. Proc R Soc B 282:20142302

    Article  PubMed  PubMed Central  Google Scholar 

  • Glazier DS, Borrelli JJ, Hoffman CL (2020) Effects of fish predators on the mass-related energetics of a keystone freshwater crustacean. Biology 9:40

    Article  PubMed Central  Google Scholar 

  • Graham MS, Fletcher GL, Benfey TJ (1985) Effect of triploidy on blood oxygen content of Atlantic salmon. Aquaculture 50:133–139

    Article  Google Scholar 

  • Gregory TR (2001) The bigger the c-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells Mol Dis 27(5):830–843

    Article  CAS  PubMed  Google Scholar 

  • Hardie DC, Hebert PDN (2003) The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome 46(4):683–706

    Article  CAS  PubMed  Google Scholar 

  • Hardie DC, Hebert PDN (2004) Genome-size evolution in fishes. Can J Fish Aquat Sci 61(9):1636–1646

    Article  Google Scholar 

  • Hermaniuk A, Rybacki M, Taylor JRE (2017) Metabolic rate of diploid and triploid edible frog Pelophylax esculentus correlates inversely with cell size in tadpoles but not in frogs. Physiol Biochem Zool 90(2):230–239

    Article  PubMed  Google Scholar 

  • Hirst AG, Glazier DS, Atkinson D (2014) Body shape shifting during growth permits tests that distinguish between competing geometric theories of metabolic scaling. Ecol Lett 17(10):1274–1281

    Article  PubMed  Google Scholar 

  • Huang QD, Zhang YR, Liu ST, Wang W, Luo YP (2013) Intraspecific scaling of the resting and maximum metabolic rates of the crucian carp (Carassius auratus). PLoS ONE 8:e82837

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes GM (1966) The dimensions of fish gills in relation to their function. J Exp Biol 45(1):177–195

    Article  CAS  PubMed  Google Scholar 

  • Hughes GM (1984) Scaling of respiratory areas in relation to oxygen consumption of vertebrates. Cell Mol Life Sci 40(6):519–524

    Article  CAS  Google Scholar 

  • Kozłowski J, Konarzewski M, Gawelczyk AT (2003) Cell size as a link between noncoding DNA and metabolic rate scaling. Proc Natl Acad Sci USA 100(24):14080–14085

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozłowski J, Czarbołeski M, Francois-Krassowska A, Maciak S, Pis T (2010) Cell size is positively correlated between different tissues in passerine birds and amphibians, but not necessarily in mammals. Biol Lett 6:792–796

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z (2012) Protein metabolism-related gene cloning and expression in different ploidy cyprinids. Doctoral thesis of Hunan Normal University

  • Liu SJ, Liu Y, Zhou GJ, Zhang XJ, Luo C, Feng H, He XX, Zhu GH, Yang H (2001) The formation of tetraploid stocks of red crucian carp × common carp hybrids as an effect of interspecific hybridization. Aquaculture 192(2):171–186

    Article  Google Scholar 

  • Luo YP, He DC, Li G, Xie H, Zhang YR, Huang QD (2015) Intraspecific metabolic scaling exponent depends on red blood cell size in fishes. J Exp Biol 218(10):1496–1503

    PubMed  Google Scholar 

  • Luo YP, Li Q, Zhu XL, Zhou J, Shen C, Xia DY, Li G (2020) Ventilation frequency reveals the roles of exchange surface areas in metabolic scaling. Physiol Biochem Zool 93(1):13–22

    Article  PubMed  Google Scholar 

  • Maciak S, Janko K, Kotusz J, Choleva L, Boroń A, Juchno D, Kujawa R, Kozłowski J, Konarzewski M (2011) Standard metabolic rate (SMR) is inversely related to erythrocyte and genome size in allopolyploid fish of the Cobitis taenia hybrid complex. Funct Ecol 25:1072–1078

    Article  Google Scholar 

  • Nathanailides C, Klaoudatos D, Perdikaris C, Klaoudatos S, Kolygas M, Athanassopoulou F (2019) Metabolic differentiation of diploid and triploid European sea bass juveniles. Int Aquat Res 11(2):199–206

    Article  Google Scholar 

  • O’Donnell KM, MacRae KL, Verhille CE, Sacobie CFD, Benfey TJ (2017) Standard metabolic rate of juvenile triploid brook charr, Salvelinus fontinalis. Aquaculture 479:85–90

    Article  Google Scholar 

  • Okie JG (2013) General models for the spectra of surface area scaling strategies of cells and organisms: fractality, geometric dissimilitude, and internalization. Am Nat 181(3):421–439

    Article  PubMed  Google Scholar 

  • Oliva-Teles A, Kaushik SJ (1987) Metabolic utilization of diets by polyploid rainbow trout (Salmo gairdneri). Comp Biochem Physiol A 88(1):45–47

    Article  CAS  PubMed  Google Scholar 

  • Parsons GR (1993) Comparisons of triploid and diploid white crappies. Trans Am Fish Soc 122:237–243

    Article  Google Scholar 

  • Perruzi S, Varsamos S, Chatain B, Fauvel C, Menu B, Falguière J, Sévère A, Flik G (2005) Haematological and physiological characteristics of diploid and triploid sea bass Dicentrarchus labrax L. Aquaculture 244(1):359–367

    Article  Google Scholar 

  • Polymeropoulos ET, Plouffe D, Leblanc S, Elliott NG, Currie S, Frappell PB (2014) Growth hormone transgenesis and polyploidy increase metabolic rate, alter the cardiorespiratory response and influence HSP expression in response to acute hypoxia in Atlantic salmon (Salmo salar) yolk-sac alevins. J Exp Biol 217(13):2268–2276

    PubMed  Google Scholar 

  • Post JR, Lee JA (1996) Metabolic ontogeny of teleosts fishes. Can J Fish Aquat Sci 53(4):910–923

    Article  Google Scholar 

  • R Development Core Team (2020) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. https://www.R-project.org. Accessed 22 June 2020

  • Rubalcaba JG, Verberk WCEP, Hendriks AJ, Saris B, Woods HA (2020) Oxygen limitation may affect the temperature and size dependence of metabolism in aquatic ectotherms. Proc Natl Acad Sci USA 117(50):31963–31968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubner M (1883) Über den Einfluss der Körpergrösse auf Stoff-und Kraftwechsel. Zeit Biol 19:535–562

    Google Scholar 

  • Sezaki K, Watabe S, Tsukamoto K, Hashimoto K (1991) Effects of increase in ploidy status on respiratory function of Ginbuna, Carassius auratus langsdorfi (cyprinidae). Comp Biochem Physiol A 99(1):123–127

    Article  Google Scholar 

  • Starostová Z, Kubička L, Konarzewski M, Kozłowski J, Kratochvíl L (2009) Cell size but not genome size affects scaling of metabolic rate in eyelid geckos. Am Nat 174(3):100–105

    Article  Google Scholar 

  • Starostová Z, Konarzewski M, Kozłowski J, Kratochvíl L (2013) Ontogeny of metabolic rate and red blood cell size in Eyelid Geckos: species follow different paths. PLoS ONE 8:e64715

    Article  PubMed  PubMed Central  Google Scholar 

  • Swarup H (1959a) The oxygen consumption of diploid and triploid Gasterosteus aculeatus (L). J Genet 56(2):156–160

    Article  CAS  Google Scholar 

  • Swarup H (1959b) Effect of triploidy on the body size, general organization and cellular structure in Gasterosteus aculeatus (L). J Genet 56(2):143–155

    Article  Google Scholar 

  • Szarski H (1976) cell size and nuclear DNA content in vertebrates. Int Rev Cytol 44:93–111

    Article  CAS  PubMed  Google Scholar 

  • Vetešník L, Halačka K, Šimková A (2013) The effect of ploidy and temporal changes in the biochemical profile of gibel carp (Carassius gibelio): a cyprinid fish species with dual reproductive strategies. Fish Physiol Biochem 39(2):171–180

    Article  PubMed  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  Google Scholar 

  • Wolters WR, Chrisman CL, Libey GS (1982) Erythrocyte nuclear measurements of diploid and triploid channel catfish, Ictalurus punctatus (Rafinesque). J Fish Biol 20(3):253–258

    Article  Google Scholar 

  • Xiong W, Zhu YQ, Zhu XL, Li Q, Luo Y (2020) Effects of gill excision and food deprivation on metabolic scaling in the goldfish Carassius auratus. J Exp Zool 333(3):194–200

    Article  Google Scholar 

  • Yamamoto A, Iida T (1994a) Oxygen consumption and hypoxic tolerance of triploid rainbow trout. Fish Pathol 29(4):245–251

    Article  Google Scholar 

  • Yamamoto A, Iida T (1994b) Haematological characteristics of triploid rainbow trout. Fish Pathol 29(4):239–243

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mr. Bo Zhang for his help with fish collection.

Funding

This work was supported by the National Natural Science Foundation of China (No. 31672287).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception. YL designed and supervised the experiments. The experiment was performed by YZ, WX, and YX. Data analysis was performed by YZ, YX, PZ, and JZ. The first draft of the manuscript was written by YZ and YL. All the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Yiping Luo.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Ethical approval

All handling and treatment procedures were conducted in accordance with the requirements of the environment and housing facilities for laboratory animals in China (Gb/T14925-2001) and were approved by the School of Life Sciences, Southwest University (LS-SWU-1612).

Additional information

Communicated by H.V. Carey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Xiong, W., Xu, Y. et al. Comparison of metabolic scaling between triploid and diploid common carp. J Comp Physiol B 191, 711–719 (2021). https://doi.org/10.1007/s00360-021-01365-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-021-01365-x

Keywords

Navigation