Effects of emersion on acid–base regulation, osmoregulation, and nitrogen physiology in the semi-terrestrial mangrove crab, Helice formosensis

Abstract

Emersion limits water availability and impairs the gill function of water-breathing animals resulting in a reduced capacity to regulate respiratory gas exchange, acid–base balance, and nitrogenous waste excretion. Semi-terrestrial crustaceans such as Helice formosensis mitigate these physiological consequences by modifying and recycling urine and branchial water shifting some branchial workload to the antennal glands. To investigate how this process occurs, Helice formosensis were emersed for up to 160 h and their hemolymph and urinary acid–base, nitrogenous waste, free amino acids, and osmoregulatory parameters were investigated. Upon emersion, crabs experienced a respiratory acidosis that is restored by bicarbonate accumulation and ammonia reduction within the hemolymph and urine after 24 h. Prolonged emersion caused an overcompensatory metabolic alkalosis potentially limiting the crab’s ability to remain emersed. During the alkalosis, hemolymph ammonia was maintained at control levels while urinary ammonia remained reduced by 60% of control values. During emersion, ammonia may be temporarily converted to alanine as part of the Cahill cycle until re-immersion where crabs can revert alanine to ammonia for excretion coinciding with the crabs’ observed delayed ammonia excretion response. The presence of high hemolymph alanine concentrations even when immersed may indicate this cycle’s use outside of emersion or in preparation for emersion. Furthermore, H. formosensis appears to be uniquely capable of actively suppressing its rate of desiccation in absence of behavioral changes, in part by creating hyperosmotic urine that mitigates evaporative water loss.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Availability of data material

Data are available at the request to the corresponding author.

References

  1. Abel DC, Koenig CC, Davis WP (1987) Emersion in the mangrove forest fish Rivulus marmoratus: a unique response to hydrogen sulfide. Environ Biol Fishes 18:67–72

    Google Scholar 

  2. Adamczewska AM, Morris S (2000) Respiratory gas transport, metabolic status, and locomotor capacity of the Christmas Island red crab Gecarcoidea natalis assessed in the field with respect to dichotomous seasonal activity levels. J Exp Zool 286:552–562

    CAS  PubMed  Google Scholar 

  3. Allen GJP, Kuan PL, Tseng YC et al (2020) Specialized adaptations allow vent-endemic crabs (Xenograpsus testudinatus) to thrive under extreme environmental hypercapnia. Sci Rep 10:1–13

    Google Scholar 

  4. Armenta JM, Cortes DF, Pisciotta JM et al (2010) A sensitive and rapid method for amino acid quantitation in malaria biological samples using AccQ•Tag UPLC-ESI-MS/MS with multiple reaction monitoring. Anal Chem 82:548–558

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Blewett TA, Goss GG (2017) A novel pathway of nutrient absorption in crustaceans: branchial amino acid uptake in the green shore crab (Carcinus maenas). Proc R Soc B Biol Sci 284:1–6

    Google Scholar 

  6. Bliss DE, Van Montfrans J, Van Montframs M, Boyer JR (1978) Behavior and growth of the land crab Gecarcinus lateralis (Freminville) in southern Florida. Bull Am Mus Nat Hist 160:113–151

    Google Scholar 

  7. Burggren WW (1992) Respiration and circulation in land crabs: novel variations on the marine design. Am Zool 32:417–427

    Google Scholar 

  8. Chasiotis H, Ionescu A, Misyura L et al (2016) An animal homolog of plant Mep/Amt transporters promotes ammonia excretion by the anal papillae of the disease vector mosquito Aedes aegypti. J Exp Biol 219:1346–1355

    PubMed  Google Scholar 

  9. Claiborne JB, Edwards SL, Morrison-Shetlar AI (2002) Acid-base regulation in fishes: cellular and molecular mechanisms. J Exp Zool 293:302–319

    CAS  PubMed  Google Scholar 

  10. De Vries MC, Wolcott DL, Holliday CW (1994) High ammonia and low pH in the urine of the ghost crab, Ocypode quadrata. Biol Bull 186:342–348

    PubMed  Google Scholar 

  11. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part A Oceanogr Res Pap 34:1733–1743

    CAS  Google Scholar 

  12. Durand F, Regnault M (1998) Nitrogen metabolism of two portunid crabs, Carcinus maenas and Necora puber, during prolonged air exposure and subsequent recovery: a comparative study. J Exp Biol 201:2515–2528

    CAS  PubMed  Google Scholar 

  13. Durand F, Chausson F, Regnault M (1999) Increases in tissue free amino acid levels in response to prolonged emersion in marine crabs: an ammonia-detoxifying process efficient in the intertidal Carcinus maenas but not in the subtidal Necora puber. J Exp Biol 202:2191–2202

    CAS  PubMed  Google Scholar 

  14. Durant AC, Donini A (2018) Ammonia excretion in an osmoregulatory syncytium is facilitated by AeAmt2, a novel ammonia transporter in Aedes aegypti larvae. Front Physiol 9:1–16

    Google Scholar 

  15. Eshky AA (1992) Evidence of additional functions of the pericardial sacs in the bronchial ventilation in the grapsid crab Grapsus tenuicrustatus. J King Abdulaziz Univ Marine Sci 3:91–104

    Google Scholar 

  16. Fehsenfeld S, Weihrauch D (2016) Mechanisms of acid-base regulation in seawater-acclimated green crabs, Carcinus maenas. Can J Zool 94:95–107

    CAS  Google Scholar 

  17. Fehsenfeld S, Weihrauch D (2017) Acid-base regulation in aquatic decapod crustaceans. In: Weihrauch D, O’Donnell MJ (eds) Acid-base balance and nitrogen excretion in invertebrates, 1st edn. Springer International Publishing, Switzerland, pp 152–185

    Google Scholar 

  18. Felig P (1973) The glucose-alanine cycle. Metabolism 22:179–207

    CAS  PubMed  Google Scholar 

  19. Felig P, Pozefsk T, Marlis E, Cahill GF (1970) Alanine: key role in gluconeogenesis. Science (80- ) 167:1003–1004

    CAS  Google Scholar 

  20. Florence TM, Farrar YJ (1971) Spectrophotometric determination of chloride at the parts-per-billion level by the mercury(II) thiocyanate method. Anal Chim Acta 54:373–377

    CAS  Google Scholar 

  21. Gilmour KM, Perry SF (2009) Carbonic anhydrase and acid-base regulation in fish. J Exp Biol 212:1647–1661

    CAS  PubMed  Google Scholar 

  22. Goss GG, Perry SF, Wood CM, Laurent P (1992) Mechanisms of ion and acid-base regulation at the gills of freshwater fish. J Exp Zool 263:143–159

    CAS  PubMed  Google Scholar 

  23. Greenaway P (1999) Physiological diversity and the colonization of land. In: Schram FR, von Vaupel Klein JC (eds) Crustaceans and the biodiversity crisis. Koninklijke Brill NV, Leiden, pp 823–842

    Google Scholar 

  24. Hans S, Fehsenfeld S, Treberg JR, Weihrauch D (2014) Acid-base regulation in the Dungeness crab (Metacarcinus magister). Mar Biol 161:1179–1193

    CAS  Google Scholar 

  25. Hans S, Quijada-Rodriguez AR, Allen GJP, et al (2018) Ammonia excretion and acid-base regulation in the American horseshoe crab, Limulus polyphemus. J Exp Biol 221

  26. Hartnoll RG (1988) Evolution, systematics, and geographical distribution. In: Burggren WW, Mcmahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 6–54

    Google Scholar 

  27. Hemre G-I, Mommsen TP, Krogdahl A (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr 8:175–194

    CAS  Google Scholar 

  28. Henry RP, Cameron JN (1982) Acid-base balance in Callinectes sapidus during acclimation from high to low salinity. J Exp Biol 101:255–264

    Google Scholar 

  29. Henry RP, Lucu Č, Onken H, Weihrauch D (2012) Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physiol 3:1–33

    Google Scholar 

  30. Holmes RM, Aminot A, Kérouel R et al (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci 56:1801–1808

    CAS  Google Scholar 

  31. Hu MY, Sung PH, Guh YJ, et al (2017) Perfused gills reveal fundamental principles of pH regulation and ammonia homeostasis in the cephalopod Octopus vulgaris. Front Physiol 8

  32. Hunter KC, Kirschner LB (1986) Sodium absorption coupled to ammonia excretion in osmoconforming marine invertebrates. Am J Physiol Regul Integr Comp Physiol 251

  33. Jimenez AG, Bennett WA (2015) Respiratory physiology of three indo-pacific fiddler crabs: metabolic responses to intertidal zonation patterns. Crustaceana 78:965–974

    Google Scholar 

  34. Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251

    Google Scholar 

  35. Kristensen E (2008) Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J Sea Res 59:30–43

    Google Scholar 

  36. Larsen EH, Deaton LE, Onken H et al (2014) Osmoregulation and excretion. Compr Physiol 4:405–573

    PubMed  Google Scholar 

  37. Le Moullac G, Haffner P (2000) Environmental factors affecting immune responses in Crustacea. Aquaculture 191:121–131

    Google Scholar 

  38. Lee DJ, Gutbrod M, Ferreras FM, Matthews PGD (2018) Changes in hemolymph total CO2 content during the water-to-air respiratory transition of amphibiotic dragonflies. J Exp Biol 221

  39. Linton SM, Greenaway P (1995) Nitrogenous excretion in the amphibious crab Holthuisana transversa under wet and dry conditions. J Crustac Biol 15:633–644

    Google Scholar 

  40. Linton SM, Wright JC, Howe CG (2017) Nitrogenous waste metabolism within terrestrial crustacea, with special reference to purine deposits and their metabolism. In: Weihrauch D, O’Donnell MJ (eds) Acid-base balance and nitrogen excretion in invertebrates, 1st edn. Springer International Publishing, Gewerbestrasse, pp 27–40

    Google Scholar 

  41. Lozano-Fernandez J, Carton R, Tanner AR, et al (2016) A molecular palaeobiological exploration of arthropod terrestrialization. Philos Trans R Soc B Biol Sci 371

  42. Macmillen RE, Greenaway P (1978) Adjustments of energy and water metabolism to drought in an Australian arid-zone crab. Physiol Zool 51:230–240

    Google Scholar 

  43. Maitland DP (1986) Crabs that breathe air with their legs-scopimera and dotilla. Nature 319:493–495

    Google Scholar 

  44. Martin M, Fehsenfeld S, Sourial MM, Weihrauch D (2011) Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in seawater acclimated Dungeness crab Metacarcinus magister. Comp Biochem Physiol A Mol Integr Physiol 160:267–277

    CAS  PubMed  Google Scholar 

  45. McGaw IJ, Van Leeuwen TE, Trehern RH, Bates AE (2019) Changes in precipitation may alter food preference in an ecosystem engineer, the black land crab. Gecarcinus ruricola PeerJ 7:e6818

    PubMed  Google Scholar 

  46. Mchenga ISS, Mfilinge PL, Tsuchiya M (2007) Bioturbation activity by the grapsid crab Helice formosensis and its effects on mangrove sedimentary organic matter. Estuar Coast Shelf Sci 73:316–324

    Google Scholar 

  47. McKenzie DJ, Shingles A, Taylor EW (2003) Sub-lethal plasma ammonia accumulation and the exercise performance of salmonids. Comp Biochem Physiol A Mol Integr Physiol 135:515–526

    CAS  PubMed  Google Scholar 

  48. Mckenzie DJ, Shingles A, Claireaux G, Domenici P (2009) Sublethal concentrations of ammonia impair performance of the teleost fast-start escape response. Physiol Biochem Zool 82:353–362

    CAS  PubMed  Google Scholar 

  49. Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    CAS  Google Scholar 

  50. Mia Y, Shokita S (1997) Optimal salinity required for the larval development of two grapsid crabs, Helice leachi Hess and H. formosensis Rathbun. Crustac Res 26:70–74

    Google Scholar 

  51. Mia Y, Shokita S, Watanabe S (2001) Stomach contents of two grapsid crabs, Helice formosensis and Helice leachi. Fish Sci 67:173–175

    CAS  Google Scholar 

  52. Mommsen TP, Walsh PJ (1991) Urea synthesis in fishes: evolutionary and biochemical perspectives. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes. Elsevier Science Publishers, 137–163

  53. Morris S (2002) The ecophysiology of air-breathing in crabs with special reference to Gecarcoidea natalis. Comp Biochem Physiol B 131:559–570

    PubMed  Google Scholar 

  54. Morris S, Greenaway P (1990) Adaptations to a terrestrial existence by the robber crab, Birgus latro L. V. The activity of carbonic anhydrase in gills and lungs. J Comp Physiol B 160:217–221

    CAS  Google Scholar 

  55. Nawata M, Wood CM, O’Donnell MJ (2010) Functional characterization of Rhesus glycoproteins from an ammoniotelic teleost, the rainbow trout, using oocyte expression and SIET analysis. J Exp Biol 213:1049–1059

    CAS  PubMed  Google Scholar 

  56. O’Donnell MJ, Machin J (1988) Water vapor absorption by terrestrial organsisms. Advances in comparative and environmental physiology. Springer-Verlag, Heidelberg, pp 47–87

    Google Scholar 

  57. Penha-Lopes G, Bartolini F, Limbu S et al (2009) Are fiddler crabs potentially useful ecosystem engineers in mangrove wastewater wetlands? Mar Pollut Bull 58:1694–1703

    CAS  PubMed  Google Scholar 

  58. Perry SF, Shahsavarani A, Georgalis T et al (2003) Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: their role in ionic and acid-base regulation. J Exp Zool Part A Comp Exp Biol 300:53–62

    CAS  Google Scholar 

  59. Pierrot D, Lewis E, Wallace D (2006) MS Excel program developed for CO2 system calculations, ORNL/CDIAC-105. Oak Ridge, TN

    Google Scholar 

  60. Regnault M (1994) Effect of air exposure on ammonia excretion and ammonia content of branchial water of the crab Cancer pagurus. J Exp Zool 268:208–217

    CAS  Google Scholar 

  61. Simonik E, Henry RP (2014) Physiological responses to emersion in the intertidal green crab, Carcinus maenas (L.). Mar Freshw Behav Physiol 47:101–115

    CAS  Google Scholar 

  62. Somero GN (1986) Protons, osmolytes, and fitness of internal milieu for protein function. Am J Physiol 251

  63. Teal JM, Carey FG (1967) The metabolism of marsh crabs under conditions of reduced oxygen pressure. Physiol Zool 40:83–91

    CAS  Google Scholar 

  64. Thiel D, Hugenschutt M, Meyer H et al (2017) Ammonia excretion in the marine polychaete Eurythoe complanata (Annelida). J Exp Biol 220:425–436

    PubMed  Google Scholar 

  65. Truchot JP (1975) Blood acid-base changes during experimental emersion and reimmersion of the intertidal crab Carcinus maenas (L.). Respir Physiol 23:351–360

    CAS  PubMed  Google Scholar 

  66. Truchot JP (1976) Carbon dioxide combining properties of the blood of the shore crab Carcinus maenas (L.): carbon dioxide solubility coefficient and carbonic acid dissociation constants. J Exp Biol 64:45–57

    CAS  PubMed  Google Scholar 

  67. Tsai JR, Lin HC (2014) Functional anatomy and ion regulatory mechanisms of the antennal gland in a semi-terrestrial crab, Ocypode stimpsoni. Biol Open 3:409–417

    PubMed  PubMed Central  Google Scholar 

  68. Tseng KY, Tsai JR, Lin HC (2020) Ion regulation in the antennal glands differs among Ocypodoidea and Grapsoidea crab species. Comp Biochem Physiol A 248:110753

    CAS  Google Scholar 

  69. Varley DG, Greenaway P (1994) Nitrogenous excretion in the terrestrial carnivorous crab Geograpsus grayi: Site and mechanism of excretion. J Exp Biol 190:179–193

    CAS  PubMed  Google Scholar 

  70. Weihrauch D, Allen GJP (2018) Ammonia excretion in aquatic invertebrates: New insights and questions. J Exp Biol 221

  71. Weihrauch D, Becker W, Postel U et al (1998) Active excretion of ammonia across the gills of the shore crab Carcinus maenas and its relation to osmoregulatory ion uptake. J Comp Physiol B 168:364–376

    CAS  Google Scholar 

  72. Weihrauch D, Ziegler A, Siebers D, Towle DW (2002) Active ammonia excretion across the gills of the green shore crab Carcinus maenas: Participation of Na+/K+-ATPase, V-type H+-ATPase and functional microtubules. J Exp Biol 205:2765–2775

    CAS  PubMed  Google Scholar 

  73. Weihrauch D, Fehsenfeld S, Quijada-Rodriguez AR (2017) Nitrogen excretion in aquatic crustaceans. In: Weihrauch D, O’Donnell MJ (eds) Acid-base balance and nitrogen excretion in invertebrates, 1st edn. Springer, Gewerbestrasse, pp 2–21

    Google Scholar 

  74. Weiner ID, Verlander JW (2011) Role of NH3 and NH4+ transporters in renal acid-base transport. Am J Physiol - Ren Physiol 300:F11–F23

    CAS  Google Scholar 

  75. Weiner ID, Verlander JW (2013) Renal ammonia metabolism and transport. Compr Physiol 3:201–220

    PubMed  PubMed Central  Google Scholar 

  76. Wieser W, Schweizer G, Hartenstein R (1969) Patterns in the release of gaseous ammonia by terrestrial isopods. Oecologia 3:390–400

    CAS  PubMed  Google Scholar 

  77. Wilkie MP (1997) Mechanisms of ammonia excretion across fish gills. Comp Biochem Physiol A 118:39–50

    Google Scholar 

  78. Wolcott DL (1991) Nitrogen excretion is enhanced during urine recycling in two species of terrestrial crab. J Exp Zool 259:181–187

    Google Scholar 

  79. Wolcott TG (1992) Water and solute balance in the transition to land. Am Zool 32:428–437

    Google Scholar 

  80. Wood CM, Boutilier RG (1985) Osmoregulation, ionic exchange, blood chemistry, and nitrogenous waste excretion in the land crab Cardisoma carnifex: a field and laboratory study. Biol Bull 169:267–290

    Google Scholar 

  81. Wood CM, Boutilier RG, Randall DJ (1986) The physiology of dehydration stress in the land crab, Cardisoma carnifex: Respiration, ionoregulation, acid-base balance and nitrogenous waste excretion. J Exp Biol 126:271–296

    CAS  Google Scholar 

  82. Wright JC, O’Donnell MJ (1992) Osmolality and electrolyte composition of pleon fluid in Porcellio scaber (Crustacea, Isopoda, Oniscidea): implications for water vapour absorption. J Exp Biol 164:189–203

    Google Scholar 

  83. Wright JC, O’Donnell MJ (1993) Total ammonia concentration and pH of haemolymph, pleon fluid and maxillary urine in Porcellio scaber Lattreille (Isopoda, Oniscidea): relationships to ambient humidity and water vapour uptake. J Exp Biol 176:233–246

    CAS  Google Scholar 

  84. Wright JC, Peña-Peralta M (2005) Diel variation in ammonia excretion, glutamine levels, and hydration status in two species of terrestrial isopods. J Comp Physiol B 175:67–75

    CAS  PubMed  Google Scholar 

  85. Wright PA, Wood CM (2012) Seven things fish know about ammonia and we don’t. Respir Physiol Neurobiol 184:231–240

    CAS  PubMed  Google Scholar 

  86. Young-Lai W, Charmantier-Daures M, Charmantier G (1991) Effect of ammonia on survival and osmoregulation in different life stages of the lobster Homarus americanus. Mar Biol 110:293–300

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Nick Chaung for help locating and obtaining the crabs used in this study as well as E-Hong Instruments (Taipei, Taiwan) for allowing us to use their atomic absorption spectrophotometer throughout these experiments.

Funding

G.J.P.A. was funded by a National Science and Engineering Research Council (NSERC) CGS-D and the University of Manitoba’s Field Work Support Program, D.W. was funded by an NSERC Discovery grant (RGPIN/5013‐2018).

Author information

Affiliations

Authors

Contributions

GJPA designed the study, performed experiments, and wrote the manuscript. M-CW performed some cation measurements and amino acid measurements. Y-CT and DW helped design the experiment, revise the manuscript, and funded the research.

Corresponding author

Correspondence to Dirk Weihrauch.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by G. Heldmaier.

Supplementary Information

Supplementary material 1 (MP4 5619 kb)

SI Figure 1.

Hemolymph (N = 6–12) and urinary (N = 4-12) essential amino acid composition of immersed (0-h) and emersed crabs over a 160-hour time-course exposure. Where data in not available for urinary concentrations no detectable amino acid presence was found. Values are represented as the mean ± S.E.M. (JPG 43 KB)

SI Figure 2.

Hemolymph (N = 6–12) non-essential amino acid composition of immersed (0-h) and emersed crabs over a 160-hour time-course exposure. Where data in not available for urinary concentrations no detectable amino acid presence was found. Values are represented as the mean ± S.E.M. (JPG 80 KB)

SI Figure 3.

Urinary (N = 4–12) non-essential amino acid composition of immersed (0-h) and emersed crabs over a 160-hour time-course exposure. Where data in not available for urinary concentrations no detectable amino acid presence was found. Values are represented as the mean ± S.E.M. (JPG 64 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allen, G.J.P., Wang, MC., Tseng, YC. et al. Effects of emersion on acid–base regulation, osmoregulation, and nitrogen physiology in the semi-terrestrial mangrove crab, Helice formosensis. J Comp Physiol B 191, 455–468 (2021). https://doi.org/10.1007/s00360-021-01354-0

Download citation

Keywords

  • Carbon dioxide
  • Bicarbonate
  • Ammonia excretion
  • Alanine-glucose cycle
  • Free amino acids
  • Crustaceans