Paternal nutrient provisioning during male pregnancy in the seahorse Hippocampus abdominalis

Abstract

Vertebrates that incubate embryos on or within the body cavity exhibit diverse strategies to provide nutrients to developing embryos, ranging from lecithotrophy (solely yolk-provided nutrition) to substantial matrotrophy (supplemental nutrients from the mother before birth). Syngnathid fishes (seahorses, pipefishes and sea dragons) are the only vertebrates to exhibit male pregnancy. Therefore, they provide a unique opportunity for comparative evolutionary research, in examining pregnancy independent of the female reproductive tract. Here, we tested the hypothesis that the most complex form of syngnathid pregnancy involves nutrient transport from father to offspring. We compared the dry masses of newly fertilised Hippocampus abdominalis eggs with those of fully developed neonates to derive a patrotrophy index. The patrotrophy index of H. abdominalis was 1, indicating paternal nutrient supplementation to embryos during gestation. We also measured the lipid content of newly fertilised eggs and neonates and found that there was no significant decrease in lipid mass during embryonic development. Since lipids are likely to be the main source of energy during embryonic development, our results suggest that lipid yolk reserves being depleted by embryonic metabolism are replaced by the brooding father. The results of our study support the hypothesis that nutrient transport occurs in the most advanced form of male pregnancy in vertebrates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Blackburn DG (1992) Convergent evolution of viviparity, matrotrophy, and specializations for fetal nutrition in reptiles and other vertebrates. Integr Comp Biol 32:313–321. https://doi.org/10.1093/icb/32.2.313

    Article  Google Scholar 

  2. Blackburn DG (2015) Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. J Morphol. https://doi.org/10.1002/jmor.20272

    Article  PubMed  Google Scholar 

  3. Buddle AL, Van Dyke JU, Thompson MB, Simpfendorfer CA, Whittington CM (2018) Evolution of placentotrophy: using viviparous sharks as a model to understand vertebrate placental evolution. Mar Freshw Res. https://doi.org/10.1071/MF18076

    Article  Google Scholar 

  4. Carcupino M, Baldacci A, Mazzini M, Franzoi P (1997) Morphological organization of the male brood pouch epithelium of Syngnathus abaster Risso ( Teleostea, Syngnathidae) before, during, and after egg incubation. Tissue Cell 29:21–30. https://doi.org/10.1016/S0040-8166(97)80068-7

    CAS  Article  PubMed  Google Scholar 

  5. Carcupino M, Baldacci A, Mazzini M, Franzoi P (2002) Functional significance of the male brood pouch in the reproductive strategies of pipefishes and seahorses: a morphological and ultrastructural comparative study on three anatomically different pouches. J Fish Biol 61:1465–1480. https://doi.org/10.1111/j.1095-8649.2002.tb02490.x

    Article  Google Scholar 

  6. Carter AM, Enders AC (2013) The evolution of epitheliochorial placentation. Annu Rev Anim Sci 1:443–467. https://doi.org/10.1146/annurev-animal-031412-103653

    Article  Google Scholar 

  7. Conceição LEC, Yúfera M, Makridis P, Morais S, Dinis MT (2010) Live feeds for early stages of fish rearing. Aquac Res 41:613–640. https://doi.org/10.1111/j.1365-2109.2009.02242.x

    Article  Google Scholar 

  8. Faleiro F, Narciso L (2010) Lipid dynamics during early development of Hippocampus guttulatus seahorses: searching for clues on fatty acid requirements. Aquaculture 307:56–64. https://doi.org/10.1016/j.aquaculture.2010.07.005

    Article  Google Scholar 

  9. Finn R, Henderson J, Fyhn H (1995) Physiological energetics of developing embryos and yolk-sac larvae of Atlantic cod (Gadus morhua ). II. Lipid metabolism and enthalpy balance. Mar Biol 124:371–379. https://doi.org/10.1007/BF00363910

    Article  Google Scholar 

  10. Folch J, Lees M, Stanley GS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  11. Foster SJ, Vincent A (2004) Life history and ecology of seahorses: implications for conservation and management. J Fish Biol 65(1):1–61

    Article  Google Scholar 

  12. Frazer HA, Ellis M, Huveneers C (2012) Can a threshold value be used to classify chondrichthyan reproductive modes: systematic review and validation using an oviparous species. PLoS ONE 7(12):e50196

    CAS  Article  Google Scholar 

  13. Hamilton H et al (2017) Molecular phylogeny and patterns of diversification in syngnathid fishes. Mol Phylogenet Evol 107:388–403. https://doi.org/10.1016/j.ympev.2016.10.003

    Article  PubMed  Google Scholar 

  14. Haresign TW, Shumway SE (1981) Permeability of the marsupium of the pipefish Syngnathus fuscus to [14C]-alpha amino isobutyric acid. Comp Biochem Physiol Part A Physiol 69:603–604. https://doi.org/10.1016/0300-9629(81)93030-9

    Article  Google Scholar 

  15. Hölttä-Vuori M, Salo VTV, Nyberg L, Brackmann C, Enejder A, Panula P, Ikonen E (2010) Zebrafish: gaining popularity in lipid research. Biochem J 429:235–242. https://doi.org/10.1042/BJ20100293

    CAS  Article  PubMed  Google Scholar 

  16. Honeycutt M, McFarland V, McCant D (1995) Comparison of three lipid extraction methods for fish. Bull Environ Contam Toxicol 55:469–472. https://doi.org/10.1007/BF00206688

    CAS  Article  PubMed  Google Scholar 

  17. Huveneers C, Otway N, Harcourt R, Ellis M (2011) Quantification of the maternal–embryonal nutritional relationship of elasmobranchs: case study of wobbegong sharks (genus Orectolobus). J Fish Biol 78(5):1375–1389

    CAS  Article  Google Scholar 

  18. Kvarnemo C et al (2011) Evidence of paternal nutrient provisioning to embryos in broad-nosed pipefish Syngnathus typhle. J Fish Biol 78:1725–1737. https://doi.org/10.1111/j.1095-8649.2011.02989.x

    CAS  Article  PubMed  Google Scholar 

  19. Laksanawimol P, Damrongphol P, Kruatrachue M (2006) Alteration of the brood pouch morphology during gestation of male seahorses, Hippocampus kuda. Mar Freshw Res 57:497–502. https://doi.org/10.1071/MF05112

    Article  Google Scholar 

  20. Leary SL et al (2013) AVMA guidelines for the euthanasia of animals, 2013rd edn. American Veterinary Medical Association, Schaumburg

    Google Scholar 

  21. Linton JR, Soloff BL (1964) The physiology of the brood pouch of the male sea horse Hippocampus erectus. Bull Mar Sci 14:45–61

    Google Scholar 

  22. Lourie SA, Foster F, Cooper E, Vincent A (2004) A guide to the identification of seahorses Project Seahorse and TRAFFIC North America 114. University of British Columbia and World Wildlife Fund, Washington D.C

    Google Scholar 

  23. Marsh-Matthews E, Brooks M, Deaton R, Tan H (2005) Effects of maternal and embryo characteristics on post-fertilization provisioning in fishes of the genus Gambusia. Oecologia 144:12–24. https://doi.org/10.1007/s00442-005-0030-7

    Article  PubMed  Google Scholar 

  24. Mossman HW (1937) Comparative morphogenesis of the fetal membranes and accessory uterine structures, vol 26. Carnegie Institute Contributions to Embryology Carnegie Institute Contributions to Embryology, Washington

    Google Scholar 

  25. Oconer EP, Herrera AA, Amparado EA, Wetzel JT, De la Paz RM (2003) Immunolocalization of hormones involved in male gestation in the seahorse, Hippocampus barbouri Jordan and Richardson 1908. Philipp Agric Sci 86:84–91

    Google Scholar 

  26. Otero-Ferrer F, Lättekivi F, Ord J, Reimann E, Kõks S, Izquierdo M, Holt W, Fazeli A (2020) Time-critical influences of gestational diet in a seahorse model of male pregnancy. J Exp Biol 223(3):jeb210302

    Article  Google Scholar 

  27. Pethybridge H, Daley R, Virtue P, Nichols P (2011) Lipid (energy) reserves, utilisation and provisioning during oocyte maturation and early embryonic development of deepwater chondrichthyans. Mar Biol 158:2741–2754. https://doi.org/10.1007/s00227-011-1773-9

    CAS  Article  Google Scholar 

  28. Ramirez-Pinilla MP (2006) Placental transfer of nutrients during gestation in an Andean population of the highly matrotrophic lizard genus Mabuya (Squamata : Scincidae). Herpetol Monogr 20:194–204

    Article  Google Scholar 

  29. Reznick D, Mateos M, Springer D (2002) Independent origins and rapid evolution of the placenta in the fish genus Poeciliopsis. Science (Washington) 298:1018–1020

    CAS  Article  Google Scholar 

  30. Riesch R, Plath M, Schlupp I, Marsh-Matthews E (2010) Matrotrophy in the cave molly: an unexpected provisioning strategy in an extreme environment. Evol Ecol 24:789–801. https://doi.org/10.1007/s10682-009-9335-z

    Article  Google Scholar 

  31. Ripley J, Foran C (2009) Direct evidence for embryonic uptake of paternally-derived nutrients in two pipefishes (Syngnathidae: Syngnathus spp.). J Comp Physiol B 179:325–333. https://doi.org/10.1007/s00360-008-0316-2

    Article  PubMed  Google Scholar 

  32. Ripley JL, Foran CM (2006) Differential parental nutrient allocation in two congeneric pipefish species (Syngnathidae: Syngnathus spp.). J Exp Biol 209:1112–1121. https://doi.org/10.1242/jeb.02119

    Article  PubMed  Google Scholar 

  33. Rosa R, Calado R, Andrade AM, Narciso L, Nunes ML (2005) Changes in amino acids and lipids during embryogenesis of European lobster, Homarus gammarus (Crustacea: Decapoda). Comp Biochem Physiol Part B 140:241–249. https://doi.org/10.1016/j.cbpc.2004.10.009

    CAS  Article  Google Scholar 

  34. Scobell SK, MacKenzie DS (2011) Reproductive endocrinology of Syngnathidae. J Fish Biol 78:1662–1680. https://doi.org/10.1111/j.1095-8649.2011.02994.x

    CAS  Article  PubMed  Google Scholar 

  35. Serrano AE Jr (2012) Optimum level of fish liver oil as enrichment for Artemia fed to the tiger tail seahorse Hippocampus comes for reproduction and juvenile survival. Aquac Aquar Conserv Legis 5:249–258

    Google Scholar 

  36. Sommer S, Whittington C, Wilson A (2012) Standardised classification of pre-release development in male-brooding pipefish, seahorses, and seadragons (Family Syngnathidae). BMC Dev Biol 12:39

    Article  Google Scholar 

  37. Speake B, Thompson M, Thacker F, Bedford G (2003) Distribution of lipids from the yolk to the tissues during development of the water python (Liasis fuscus). J Comp Physiol B 173:541–547. https://doi.org/10.1007/s00360-003-0362-8

    CAS  Article  PubMed  Google Scholar 

  38. Speake BK, Noble RC, Murray AMB (1998) The utilization of yolk lipids by the chick embryo. World's Poult Sci J 54:319–334. https://doi.org/10.1079/WPS19980022

    Article  Google Scholar 

  39. Speake BK, Thompson MB (2000) Lipids of the eggs and neonates of oviparous and viviparous lizards. Comp Biochem Physiol Part A 127:453–467. https://doi.org/10.1016/S1095-6433(00)00276-2

    CAS  Article  Google Scholar 

  40. Stewart JR (2013) Fetal nutrition in lecithotrophic squamate reptiles: toward a comprehensive model for evolution of viviparity and placentation. J Morphol. https://doi.org/10.1002/jmor.20141

    Article  PubMed  Google Scholar 

  41. Stewart JR, Castillo RE (1984) Nutritional provision of the yolk of two species of viviparous reptiles. Physiol Zool 57:377–383. https://doi.org/10.1086/physzool.57.4.30163339

    CAS  Article  Google Scholar 

  42. Stölting KN, Wilson AB (2007) Male pregnancy in seahorses and pipefish: beyond the mammalian model. BioEssays 29(9):884–896. https://doi.org/10.1002/bies.20626  

    Article  PubMed  Google Scholar 

  43. Swain R, Jones S (1997) Maternal-fetal transfer of 3H-labelled leucine in the viviparous lizard Niveoscincus metallicus (Scincidae: Lygosominae). J Exp Zool. https://doi.org/10.1002/(SICI)1097-010X(19970201)277:2<139:AID-JEZ5>3.0.CO;2-Q

    Article  Google Scholar 

  44. Thompson S, Stewart R, McCartney S (1999a) Placental nutrition in the viviparous lizard Niveoscincus metallicus: the influence of placental type. J Exp Biol 202:2985

    CAS  PubMed  Google Scholar 

  45. Thompson MB, Speake BK, Russell KJ, McCartney RJ (2001) Nutrient uptake by embryos of the Australian viviparous lizard Eulamprus tympanum. Physiol Biochem Zool Ecol Evol Approaches 74:560–567. https://doi.org/10.1086/322166

    CAS  Article  Google Scholar 

  46. Thompson MB, Speake BK, Russell KJ, McCartney RJ, Surai PF (1999b) Changes in fatty acid profiles and in protein, ion and energy contents of eggs of the Murray short-necked turtle, Emydura macquarii (Chelonia, Pleurodira) during development. Comp Biochem Physiol A Mol Integr Physiol 122:75–84. https://doi.org/10.1016/S1095-6433(98)10150-2

    Article  Google Scholar 

  47. Thompson MB, Stewart JR, Speake BK (2000) Comparison of nutrient transport across the placenta of lizards differing in placental complexity. Comp Biochem Physiol Part A Mol Integr Physiol 127:469–479. https://doi.org/10.1016/S1095-6433(00)00277-4

    CAS  Article  Google Scholar 

  48. Thompson MB, Stewart JR, Speake BK, Russell KJ, McCartney RJ, Surai PF (1999c) Placental nutrition in a viviparous lizard (Pseudemoia pagenstecheri) with a complex placenta. J Zool 248:295–305

    Article  Google Scholar 

  49. Turcotte MM, Pires MN, Vrijenhoek RC, Reznick DN (2008) Pre- and post-fertilization maternal provisioning in livebearing fish species and their hybrids (Poeciliidae: Poeciliopsis) (Report). Funct Ecol 22:1118. https://doi.org/10.1111/j.1365-2435.2008.01461.x

    Article  Google Scholar 

  50. Van Dyke JU, Beaupre SJ (2012) Stable isotope tracer reveals that viviparous snakes transport amino acids to offspring during gestation. J Exp Biol 215:760. https://doi.org/10.1242/jeb.058644

    Article  PubMed  Google Scholar 

  51. Van Dyke JU, Griffith O (2018) Mechanisms of reproductive allocation as drivers of developmental plasticity in reptiles. J Exp Zool Part A Ecol Integr Physiol. https://doi.org/10.1002/jez.2165

    Article  Google Scholar 

  52. Van Dyke JU, Griffith OW, Thompson MB (2014) High food abundance permits the evolution of placentotrophy: Evidence from a placental lizard, Pseudemoia entrecasteauxii. Am Nat 184:198–210. https://doi.org/10.1086/677138

    Article  PubMed  Google Scholar 

  53. Vincent A (1990) Reproductive ecology of seahorses. University of Cambridge, Cambridge

    Google Scholar 

  54. Watanabe S, Watanabe Y (2002) Relationship between male size and newborn size in the seaweed pipefish, Syngnathus schlegeli. Environ Biol Fishes 65:319–325. https://doi.org/10.1023/a:1020510422509

    Article  Google Scholar 

  55. Whittington CM, Friesen CR (2020) The evolution and physiology of male pregnancy in syngnathid fishes. Biol Rev. https://doi.org/10.1111/brv.12607

    Article  PubMed  Google Scholar 

  56. Whittington CM, Griffith OW, Qi W, Thompson MB, Wilson AB (2015) Seahorse brood pouch transcriptome reveals common genes associated with vertebrate pregnancy. Mol Biol Evol 32:3114–3131. https://doi.org/10.1093/molbev/msv177

    CAS  Article  PubMed  Google Scholar 

  57. Whittington CM, Musolf K, Sommer S, Wilson AB (2013) Behavioural cues of reproductive status in seahorses Hippocampus abdominalis. J Fish Biol 83:220–226. https://doi.org/10.1111/jfb.12156

    CAS  Article  PubMed  Google Scholar 

  58. Wilson AB, Ahnesjo I, Vincent ACJ, Meyer A (2003) The dynamics of male brooding, mating patterns, and sex roles in pipefishes and seahorses (Family Syngnathidae). Evolution 57:1374–1386. https://doi.org/10.1111/j.0014-3820.2003.tb00345.x

    Article  PubMed  Google Scholar 

  59. Wilson AB, Orr JW (2011) The evolutionary origins of Syngnathidae: pipefishes and seahorses. J Fish Biol 78:1603

    CAS  Article  Google Scholar 

  60. Wilson AB, Vincent A, Ahnesj I, Meyer A (2001) Male pregnancy in seahorses and pipefishes (Family Syngnathidae): rapid diversification of paternal brood pouch morphology inferred from a molecular phylogeny. J Hered 92:159–166. https://doi.org/10.1093/jhered/92.2.159

    CAS  Article  PubMed  Google Scholar 

  61. Woods CMC (2000) Preliminary observations on breeding and rearing the seahorse Hippocampus abdominalis (Teleostei: Syngnathidae) in captivity. NZ J Mar Freshw Res 34:475–485. https://doi.org/10.1080/00288330.2000.9516950

    Article  Google Scholar 

  62. Woods CMC, Valentino F (2003) Frozen mysids as an alternative to live Artemia in culturing seahorses Hippocampus abdominalis. Aquac Res 34:757–763. https://doi.org/10.1046/j.1365-2109.2003.00882.x

    Article  Google Scholar 

  63. Woods CMC (2005) Reproductive output of male seahorses, Hippocampus abdominalis, from Wellington Harbour, New Zealand: Implications for conservation. NZ J Mar Freshw Res 39(4):881–888

    Article  Google Scholar 

  64. Wourms JP (1981) Viviparity: The maternal-fetal relationship in fishes. Am Zool 21(2):473–515

    Article  Google Scholar 

  65. Wourms JP, Grove BD, Lombardi J (1988) The maternal-embryonic relationship in viviparous fishes. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 11. Academic Press, New York, pp 1–134. https://doi.org/10.1016/S1546-5098(08)60213-7

Download references

Acknowledgements

We thank the Applied and Evolutionary Zoology Lab, particularly S. Liang, C. Foster, J. Herbert and A. Buddle for assistance with animal husbandry, and S. Dowland, J. Dudley, and S. Khan for assistance with sample collection. We thank M. Emanuel for assistance with lipid extraction training, and M. Thomson for the use of his microscope with camera attachment. This work was supported by a University of Sydney Research Accelerator (SOAR) Prize and Australian Research Council funding (DP180103370) to CMW.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Camilla M. Whittington.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the University of Sydney (University of Sydney Animal Ethics Committee approval number 2018/1302).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Kathrin H. Dausmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skalkos, Z.M.G., Van Dyke, J.U. & Whittington, C.M. Paternal nutrient provisioning during male pregnancy in the seahorse Hippocampus abdominalis. J Comp Physiol B 190, 547–556 (2020). https://doi.org/10.1007/s00360-020-01289-y

Download citation

Keywords

  • Brood pouch
  • Dry mass
  • Embryo incubation
  • Lipid mass
  • Matrotrophy
  • Parental care
  • Paternal investment
  • Patrotrophy
  • Syngnathid