A comparison of uterine contractile responsiveness to arginine vasopressin in oviparous and viviparous lizards

Abstract

Nonapeptides and their receptors regulate a diverse range of physiological processes. We assessed the contractile responsiveness of uteri from the squamate viviparous-oviparous species pair, Pseudemoia entrecasteauxii and Lampropholis guichenoti, as well as the bimodally reproductive species, Saiphos equalis, to arginine vasopressin (AVP). We assessed the resulting uterine contractility as a function of pregnancy status, species and parity mode. We also measured mRNA abundance for the nonapeptide receptor, oxytocin receptor (oxtr), in uteri from P. entrecasteauxii and L. guichenoti and compared expression across pregnancy status and parity mode. We found that pregnant uteri exhibited a significantly greater contractile response to AVP than non-pregnant uteri in all three lizard species studied. Cross-species comparisons revealed that uteri from viviparous P. entrecasteauxii were significantly more responsive to AVP than uteri from oviparous L. guichenoti during both pregnant and non-pregnant states. Conversely, for non-pregnant S. equalis, uteri from viviparous individuals were significantly less responsive to AVP than uteri from oviparous individuals, while during pregnancy, there was no difference in AVP contractile responsiveness. There was no difference in expression of oxtr between L. guichenoti and P. entrecasteauxii, or between pregnant and non-pregnant individuals within each species. We found no significant correlation between oxtr expression and AVP contractile responsiveness. These findings indicate that there are differences in nonapeptide signalling across parity mode and suggest that in these lizards, labour may be triggered either by an increase in plasma nonapeptide concentration, or by an increase in expression of a different nonapeptide receptor from the vasopressin-like receptor family.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alexandrova M, Soloff MS (1980a) Oxytocin receptors and parturition in the Guinea Pig. Biol Reprod 22(5):1106–1111. https://doi.org/10.1093/biolreprod/22.5.1106

    CAS  Article  PubMed  Google Scholar 

  2. Alexandrova M, Soloff MS (1980b) Oxytocin receptors and parturition. I Control of oxytocin receptor concentration in the rat myometrium at term. Endocrinology 106(3):730–735. https://doi.org/10.1210/endo-106-3-730

    CAS  Article  PubMed  Google Scholar 

  3. Banerjee P, Joy KP, Chaube R (2017) Structural and functional diversity of nonapeptide hormones from an evolutionary perspective: a review. Gen Comp Endocrinol 241:4–23. https://doi.org/10.1016/j.ygcen.2016.04.025

    CAS  Article  PubMed  Google Scholar 

  4. Biazik JM, Thompson MB, Murphy CR (2007) The tight junctional protein occludin is found in the uterine epithelium of squamate reptiles. J Comp Physiol [B] 177(8):935–943. https://doi.org/10.1007/s00360-007-0192-1

    CAS  Article  Google Scholar 

  5. Blackburn DG (1995) Saltationist and punctuated equilibrium models for the evolution of viviparity and placentation. J Theor Biol 174(2):199–216. https://doi.org/10.1006/jtbi.1995.0092

    CAS  Article  PubMed  Google Scholar 

  6. Blackburn DG (2006) Squamate reptiles as model organisms for the evolution of viviparity. Herpetol Monogr 20(1):131–146

    Article  Google Scholar 

  7. Blackburn DG (2015) Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. J Morphol 276(8):961–990. https://doi.org/10.1002/jmor.20272

    Article  PubMed  Google Scholar 

  8. Blanks AM, Thornton S (2003) The role of oxytocin in parturition. BJOG 110(s20):46–51. https://doi.org/10.1046/j.1471-0528.2003.00024.x

    CAS  Article  PubMed  Google Scholar 

  9. Brandley MC, Young RL, Warren DL, Thompson MB, Wagner GP (2012) Uterine gene expression in the live-bearing lizard, Chalcides ocellatus, reveals convergence of squamate reptile and mammalian pregnancy mechanisms. Genome Biol Evol 4(3):394–411. https://doi.org/10.1093/gbe/evs013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Callard IP, Lance V, Salhanick AR, Barad D (1978) The annual ovarian cycle of Chrysemys picta: correlated changes in plasma steroids and parameters of vitellogenesis. Gen Comp Endocrinol 35(3):245–257. https://doi.org/10.1016/0016-6480(78)90069-2

    CAS  Article  PubMed  Google Scholar 

  11. Callard IP, Fileti LA, Perez LE, Sorbera LA, Giannoukos G, Klosterman LL, Paul T, McCracken JA (1992) Role of the corpus luteum and progesterone in the evolution of vertebrate viviparity. Am Zool 32(2):264–275. https://doi.org/10.1093/icb/32.2.264

    CAS  Article  Google Scholar 

  12. Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, Notredame C (2011) T-Coffee a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39((Web Server issue)):W13–W17. https://doi.org/10.1093/nar/gkr245

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Dufaure JP, Hubert L (1961) Table de developpement du lezard vivipare - Lacerta (Zootoca) vivipara jacquin. Arch Anat Micr Morph Exp 50:309–328

    Google Scholar 

  14. Edwards A, Jones SM (2001) Changes in plasma progesterone, estrogen, and testosterone concentrations throughout the reproductive cycle in female viviparous blue-tongued skinks, Tiliqua nigrolutea (Scincidae) Tasmania. Gen Comp Endocrinol 122(3):260–269. https://doi.org/10.1006/gcen.2001.7634

    CAS  Article  PubMed  Google Scholar 

  15. Fergusson B, Bradshaw SD (1991) Plasma arginine vasotocin, progesterone, and luteal development during pregnancy in the viviparous lizard Tiliqua rugosa. Gen Comp Endocrinol 82(1):140–151

    CAS  Article  Google Scholar 

  16. Fergusson B, Bradshaw SD (1992) In vitro uterine contractions in the viviparous lizard Tiliqua rugosa: Effects of gestation and steroid pretreatment in vivo. Gen Comp Endocrinol 86(2):203–210. https://doi.org/10.1016/0016-6480(92)90103-Q

    CAS  Article  PubMed  Google Scholar 

  17. Figler RA, MacKenzie DS, Owens DW, Licht P, Amoss MS (1989) Increased levels of arginine vasotocin and neurophysin during nesting in sea turtles. Gen Comp Endocrinol 73(2):223–232. https://doi.org/10.1016/0016-6480(89)90095-6

    CAS  Article  PubMed  Google Scholar 

  18. Freund-Mercier MJ, Richard P (1981) Excitatory effects of intraventricular injections of oxytocin on the milk ejection reflex in the rat. Neurosci Lett 23(2):193–198. https://doi.org/10.1016/0304-3940(81)90039-2

    CAS  Article  PubMed  Google Scholar 

  19. Fuchs A-R, Fuchs F, Husslein P, Soloff MS, Fernstrom MJ (1982) Oxytocin receptors and human parturition: a dual role for oxytocin in the initiation of labor. Science 215(4538):1396–1398. https://doi.org/10.1126/science.6278592

    CAS  Article  Google Scholar 

  20. Fuchs A-R, Periyasamy S, Alexandrova M, Soloff MS (1983) Correlation between oxytocin receptor concentration and responsiveness to oxytocin in pregnant rat myometrium - effects of ovarian-steroids. Endocrinology 113(2):742–749

    CAS  Article  Google Scholar 

  21. Gao W, Sun Y-B, Zhou W-W, Xiong Z-J, Chen L, Li H, Fu T-T, Xu K, Xu W, Ma L, Chen Y-J, Xiang X-Y, Zhou L, Zeng T, Zhang S, Jin J-Q, Chen H-M, Zhang G, Hillis DM, Ji X, Zhang Y-P, Che J (2019) Genomic and transcriptomic investigations of the evolutionary transition from oviparity to viviparity. Proc Natl Acad Sci USA 116(9):3646–3655. https://doi.org/10.1073/pnas.1816086116

    CAS  Article  PubMed  Google Scholar 

  22. Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81(2):629–683

    CAS  Article  Google Scholar 

  23. Goodson JL (2008) Nonapeptides and the evolutionary patterning of sociality. Prog Brain Res 170:3–15. https://doi.org/10.1016/s0079-6123(08)00401-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Graham SP, Earley RL, Guyer C, Mendonça MT (2011) Innate immune performance and steroid hormone profiles of pregnant versus nonpregnant cottonmouth snakes (Agkistrodon piscivorus). Gen Comp Endocrinol 174(3):348–353. https://doi.org/10.1016/j.ygcen.2011.09.015

    CAS  Article  PubMed  Google Scholar 

  25. Greer AE (1989) The biology and evolution of Australian lizards. Surrey Beatty and Sons, Chipping Norton, Australia

    Google Scholar 

  26. Griffith OW, Ujvari B, Belov K, Thompson MB (2013) Placental lipoprotein lipase (LPL) gene expression in a placentotrophic lizard, Pseudemoia entrecasteauxii. J Exp Zool B Mol Dev Evolut 320(7):465–470. https://doi.org/10.1002/jez.b.22526

    CAS  Article  Google Scholar 

  27. Griffith OW, Brandley MC, Belov K, Thompson MB (2016) Reptile pregnancy is underpinned by complex changes in uterine gene expression: a comparative analysis of the uterine transcriptome in viviparous and oviparous lizards. Genome Biol Evolut 8(10):3226–3239. https://doi.org/10.1093/gbe/evw229

    CAS  Article  Google Scholar 

  28. Guillette LJ (1993) The evolution of viviparity in lizards: ecological, anatomical, and physiological correlates lead to new hypotheses. Bioscience 43(11):742–750. https://doi.org/10.2307/1312318

    Article  Google Scholar 

  29. Guillette LJ, Jones RE (1985) Ovarian, oviductal, and placental morphology of the reproductively bimodal lizard, Sceloporus aeneus. J Morphol 184(1):85–98. https://doi.org/10.1002/jmor.1051840109

    Article  PubMed  Google Scholar 

  30. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  31. Heller H (1969) Class and species specific actions of neurohypophysial hormones. In: Paper presented at the Colloques Internationaux du Centre National de la Recherche Scientifique (C.N.R.S), Paris, France

  32. Hendrawan K, Whittington CM, Brandley MC, Belov K, Thompson MB (2017) The regulation of uterine proinflammatory gene expression during pregnancy in the live-bearing lizard, Pseudemoia entrecasteauxii. J Exp Zool B Mol Dev Evolut 328(4):334–346. https://doi.org/10.1002/jez.b.22733

    CAS  Article  Google Scholar 

  33. Heulin B, Stewart JR, Surget-Groba Y, Bellaud P, Jouan F, Lancien G, Deunff J (2005) Development of the uterine shell glands during the preovulatory and early gestation periods in oviparous and viviparous Lacerta vivipara. J Morphol 266(1):80–93. https://doi.org/10.1002/jmor.10368

    Article  PubMed  Google Scholar 

  34. Hofmann K, Baron MD (2019) BOXSHADE. v3.21 edn

  35. Kota SK, Gayatri K, Jammula S, Kota SK, Krishna SV, Meher LK, Modi KD (2013) Endocrinology of parturition. Indian J Endocrinol Metab 17(1):50–59. https://doi.org/10.4103/2230-8210.107841

    Article  PubMed  PubMed Central  Google Scholar 

  36. La Pointe J (1977) Comparative physiology of neurohypophysial hormone action on the vertebrate oviduct-uterus. Integr Comp Biol 17(4):763–773. https://doi.org/10.1093/icb/17.4.763

    Article  Google Scholar 

  37. Laird MK, Thompson MB, Whittington CM (2019) Facultative oviparity in a viviparous skink (Saiphos equalis). Biol Let 15(4):20180827. https://doi.org/10.1098/rsbl.2018.0827

    CAS  Article  Google Scholar 

  38. Lemus D, Zurich L, de La Vega-Lemus YP, Wacyk J (1970) Spontaneus activity and effect of oxytocin on the islated uterus of Liolaemus gravenhorti and Liolaemus tenuis t. Archivos De Biologia Y Medicina Experimentales 7:11–13

    CAS  PubMed  Google Scholar 

  39. Mitchell BF, Schmid B (2001) Oxytocin and its receptor in the process of parturition. J Soc Gynecol Investig 8(3):122–133

    CAS  Article  Google Scholar 

  40. Mitchell BF, Taggart MJ (2009) Are animal models relevant to key aspects of human parturition? Am J Physiol Regul Integr Comp Physiol 297(3):R525–545. https://doi.org/10.1152/ajpregu.00153.2009

    CAS  Article  PubMed  Google Scholar 

  41. Moore MC, Whittier JM, Crews D (1985) Sex steroid hormones during the ovarian cycle of an all-female, parthenogenetic lizard and their correlation with pseudosexual behavior. Gen Comp Endocrinol 60(2):144–153. https://doi.org/10.1016/0016-6480(85)90308-9

    CAS  Article  PubMed  Google Scholar 

  42. Munsick RA (1960) Effect of magnesium ion on the response of the rat uterus to neurohypophysial hormones and analogues. Endocrinology 6:451–457

    CAS  Article  Google Scholar 

  43. Murphy BF, Thompson MB (2011) A review of the evolution of viviparity in squamate reptiles: the past, present and future role of molecular biology and genomics. J Comp Physiol B 181(5):575–594. https://doi.org/10.1007/s00360-011-0584-0

    Article  Google Scholar 

  44. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217. https://doi.org/10.1006/jmbi.2000.4042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Ocampo Daza D, Lewicka M, Larhammar D (2012) The oxytocin/vasopressin receptor family has at least five members in the gnathostome lineage, inclucing two distinct V2 subtypes. Gen Comp Endocrinol 175(1):135–143. https://doi.org/10.1016/j.ygcen.2011.10.011

    CAS  Article  PubMed  Google Scholar 

  46. Packard GC, Tracy CR, Roth JJ (1977) The physiological ecology of reptilian eggs and embryos, and the evolution of viviparity within the class reptilia. Biol Rev Camb Philos Soc 52(1):71–105

    CAS  Article  Google Scholar 

  47. Paul J, Maiti K, Read M, Hure A, Smith J, Chan EC, Smith R (2011) Phasic phosphorylation of caldesmon and erk 1/2 during contractions in human myometrium. PLoS ONE 6(6):e21542. https://doi.org/10.1371/journal.pone.0021542

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Paul JW, Hua S, Ilicic M, Tolosa JM, Butler T, Robertson S, Smith R (2017) Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor. Am J Obstet Gynecol 216(3):283 e281–284 e214. https://doi.org/10.1016/j.ajog.2016.08.027

    CAS  Article  Google Scholar 

  49. Qualla CP, Shine R, Donnellan S, Hutchinsonm M (1995) The evolution of viviparity within the Australian scincid lizard Lerista bougainvillii. J Zool 237(1):13–26. https://doi.org/10.1111/j.1469-7998.1995.tb02742.x

    Article  Google Scholar 

  50. Qualls FJ, Shine R (2000) Post-hatching environment contributes greatly to phenotypic variation between two populations of the Australian garden skink Lampropholis guichenoti. Biol J Linn Soc 71(2):315–341. https://doi.org/10.1111/j.1095-8312.2000.tb01260.x

    Article  Google Scholar 

  51. Shine R (1983) Reptilian reproductive modes: the oviparity-viviparity continuum. Herpetologica 39(1):1–8

    Google Scholar 

  52. Smith R (2007) Parturition. N Engl J Med 356(3):271–283

    CAS  Article  Google Scholar 

  53. Smith SA, Shine R (1997) Intraspecific variation in reproductive mode within the scincid lizard Saiphos equalis. Australian J Zool 45(5):435–445. https://doi.org/10.1071/ZO97023

    Article  Google Scholar 

  54. Smith SA, Austin CC, Shine R (2001) A phylogenetic analysis of variation in reproductive mode within an Australian lizard (Saiphos equalis, Scincidae). Biol J Lin Soc 74(2):131–139. https://doi.org/10.1111/j.1095-8312.2001.tb01382.x

    Article  Google Scholar 

  55. Stewart JR, Mathieson AN, Ecay TW, Herbert JF, Parker SL, Thompson MB (2010) Uterine and eggshell structure and histochemistry in a lizard with prolonged uterine egg retention (Lacertilia, Scincidae, Saiphos). J Morphol 271(11):1342–1351. https://doi.org/10.1002/jmor.10877

    Article  PubMed  Google Scholar 

  56. Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28(6):1102–1104

    CAS  Article  Google Scholar 

  57. Thompson MB, Speake BK (2006) A review of the evolution of viviparity in lizards: structure, function and physiology of the placenta. J Comp Physiol B 176(3):179–189. https://doi.org/10.1007/s00360-005-0048-5

    Article  PubMed  Google Scholar 

  58. Thompson MB, Stewart JR, Speake BK (2000) Comparison of nutrient transport across the placenta of lizards differing in placental complexity. Comp Biochem Physiol A Mol Integr Physiol 127(4):469–479

    CAS  Article  Google Scholar 

  59. Van Dyke JU, Brandley MC, Thompson MB (2014) The evolution of viviparity: molecular and genomic data from squamate reptiles advance understanding of live birth in amniotes. Reproduction 147(1):R15–26. https://doi.org/10.1530/rep-13-0309

    Article  PubMed  Google Scholar 

  60. Vrachnis N, Malamas FM, Sifakis S, Deligeoroglou E, Iliodromiti Z (2011) The oxytocin-oxytocin receptor system and its antagonists as tocolytic agents. Intern J Endocrinol 2011:8. https://doi.org/10.1155/2011/350546

    CAS  Article  Google Scholar 

  61. Whittington CM, Grau GE, Murphy CR, Thompson MB (2015a) Unusual angiogenic factor plays a role in lizard pregnancy but is not unique to viviparity. J Exp Zool B 324(2):152–158. https://doi.org/10.1002/jez.b.22615

    CAS  Article  Google Scholar 

  62. Whittington CM, Griffith OW, Qi W, Thompson MB, Wilson AB (2015b) Seahorse brood pouch transcriptome reveals common genes associated with vertebrate pregnancy. Mol Biol Evol 32(12):3114–3131. https://doi.org/10.1093/molbev/msv177

    CAS  Article  PubMed  Google Scholar 

  63. Whittington CM, Danastas K, Grau GE, Murphy CR, Thompson MB (2017) Expression of VEGF 111 and other VEGF-A variants in the rat uterus is correlated with stage of pregnancy. J Comp Physiol B 187(2):353–360. https://doi.org/10.1007/s00360-016-1040-y

    CAS  Article  PubMed  Google Scholar 

  64. Whittington CM, O'Meally D, Laird MK, Belov K, Thompson MB, McAllan BM (2018) Transcriptomic changes in the pre-implantation uterus highlight histotrophic nutrition of the developing marsupial embryo. Sci Rep 8(1):2412. https://doi.org/10.1038/s41598-018-20744-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Wircer E, Ben-Dor S, Levkowitz G (2016) Non-Mammalian Models for Neurohypophysial Peptides. In: Molecular Neuroendocrinology. Wiley, pp 301–328. https://doi.org/10.1002/9781118760369.ch14

    Chapter  Google Scholar 

  66. Wu Q, Parker SL, Thompson MB (2009) Selected body temperature, metabolic rate and activity pattern of the Australian fossorial skink Saiphos equalis. Herpetological J 19(3):127–133

    Google Scholar 

  67. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. https://doi.org/10.1186/1471-2105-13-134

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Jacquie Herbert, Liana Bonner, Henrique Braz and Karina Braz for fieldwork and technical assistance. Thank you also to Rick Shine, Catherine Grueber and Jayna DeVore for insightful comments on an earlier version of this manuscript.

Funding

This work was funded by a L’Oréal-UNESCO for Women in Science fellowship to CMW, an Australian Research Council Discovery Project Grant (DP180103370) to CMW and MBT, and an Australian Society of Herpetologists Grant (2017) to JOK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Camilla M. Whittington.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by H. V. Carey.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paul, J.W., Kemsley, J.O., Butler, T.A. et al. A comparison of uterine contractile responsiveness to arginine vasopressin in oviparous and viviparous lizards. J Comp Physiol B 190, 49–62 (2020). https://doi.org/10.1007/s00360-019-01254-4

Download citation

Keywords

  • Pregnancy
  • Contraction
  • Nonapeptide
  • Receptors
  • Parity mode
  • Squamates