Skip to main content
Log in

Calcium absorption in the fluted giant clam, Tridacna squamosa, may involve a homolog of voltage-gated calcium channel subunit α1 (CACNA1) that has an apical localization and displays light-enhanced protein expression in the ctenidium

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In light, giant clams can increase rates of shell formation and growth due to their symbiotic relationship with phototrophic zooxanthellae residing extracellularly in a tubular system. Light-enhanced shell formation necessitates increase in the uptake of Ca2+ from the ambient seawater and the supply of Ca2+ through the hemolymph to the extrapallial fluid, where calcification occurs. In this study, the complete coding cDNA sequence of a homolog of voltage-gated calcium channel subunit α1 (CACNA1), which is the pore-forming subunit of L-type voltage-gated calcium channels (VGCCs), was obtained from the ctenidium (gill) of the giant clam, Tridacna squamosa. It consisted of 6081 bp and encoded a 223 kDa polypeptide with 2027 amino acids, which was characterized as the α1D subunit of L-type VGCC. Immunofluorescence microscopy demonstrated that CACNA1 had an apical localization in the epithelial cells of filaments and tertiary water channels in the ctenidium of T. squamosa, indicating that it was well positioned to absorb exogenous Ca2+. Additionally, there was a significant increase in the protein abundance of CACNA1 in the ctenidium of individuals exposed to light for 12 h. With more pore-forming CACNA1, there could be an increase in the permeation of exogenous Ca2+ into the ctenidial epithelial cells through the apical membrane. Taken together, these results denote that VGCC could augment exogenous Ca2+ uptake through the ctenidium to support light-enhanced shell formation in T. squamosa. Furthermore, they support the proposition that light-enhanced phenomena in giant clams are attributable primarily to the direct responses of the host’s transporters/enzymes to light, in alignment with the symbionts’ phototrophic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allemand D, Grillo MC (1992) Biocalcification mechanism in gorgonians: 45Ca uptake and deposition by the mediterranean red coral Corallium rubrum. J Exp Zool 262:237–246

    Article  CAS  Google Scholar 

  • Bähler M, Rhoads A (2002) Calmodulin signaling via the IQ motif. FEBS Lett 513:107–113

    Article  Google Scholar 

  • Bernsel A, Viklund H, Hennerdal A, Elofsson A (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37:W465–W468. https://doi.org/10.1093/nar/gkp363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ, Oschman JL (1972) Transporting epithelia. Academic Press, New York

    Book  Google Scholar 

  • Boo MV, Hiong KC, Goh EJK, Choo CYL, Wong WP, Chew SF, Ip YK (2018) The ctenidium of the giant clam Tridacna squamosa expresses an ammonium transporter 1 that displays light-suppressed gene and protein expression and may be involved in ammonia excretion. J Comp Physiol B 188:765–777

    Article  CAS  Google Scholar 

  • Cao-Pham AH, Hiong KC, Boo MV, Choo CYL, Pang CZ, Wong WP, Neo ML, Chew SF, Ip YK (2019) Molecular characterization cellular localization and light-enhanced expression of Beta-Na+/H+ Exchanger-like in the whitish inner mantle of the giant clam Tridacna squamosa denote its role in light-enhanced shell formation. Gene 695:101–112. https://doi.org/10.1016/j.gene.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a00394

    Article  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology XLVIII Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    Article  CAS  Google Scholar 

  • Chan CYL, Hiong KC, Boo MV, Choo CYL, Wong WP, Chew SF, Ip YK (2018) Light exposure enhances urea absorption in the fluted giant clam Tridacna squamosa and up-regulates the protein abundance of a light-dependent urea active transporter DUR3-like in its ctenidium. J Exp Biol 221:jeb176313. https://doi.org/10.1242/jeb.176313

    Article  PubMed  Google Scholar 

  • Chew SF, Koh CZY, Hiong KC, Choo CYL, Wong WP, Neo ML, Ip YK (2019) Light-enhanced expression of carbonic anhydrase 4-like supports shell formation in the fluted giant clam Tridacna squamosa. Gene 683:101–112. https://doi.org/10.1016/j.gene.2018.10.023

    Article  CAS  PubMed  Google Scholar 

  • Cook CB, D’Elia CF (1987) Are natural populations of zooxanthellae ever nutrient-limited? Symbiosis 4:199–212

    Google Scholar 

  • Dubois P, Chen CP (1989) Calcification in echinoderms. Echinoderm Stud 3:109–178

    Google Scholar 

  • Felsentein J (1989) PHYLIP—phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Finn BE, Forsén S (1995) The evolving model of calmodulin structure function and activation. Structure 3:7–11

    Article  CAS  Google Scholar 

  • Gannon ME, Huerta AP, Aharon P, Street SC (2017) A biomineralization study of the Indo-Pacific giant clam Tridacna gigas. Coral Reefs 36:503–517. https://doi.org/10.1007/s00338-016-1538-5

    Article  Google Scholar 

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp 41:95–98

    CAS  Google Scholar 

  • Harzhauser M, Mandig O, Piller WE, Reuter M, Kroh A (2008) Tracing back the origin of the Indo-Pacific mollusc fauna: basal Tridacninae from the Oligocene and Miocene of the Sultanate of Oman. Palaeontology 51:199–213

    Article  Google Scholar 

  • Hering S (2002) beta-subunits: fine tuning of Ca2+ channel block. Trends Pharmacol Sci 23:509–513

    Article  CAS  Google Scholar 

  • Hernawan UE (2008) Review: symbiosis between the giant clams (Bivalvia: Cardiidae) and zooxanthellae (Dinophyceae). Biodiversitas 9:53–58

    Article  Google Scholar 

  • Hiong KC, Choo CYL, Boo MV, Ching B, Wong WP, Chew SF, Ip YK (2017a) A light-dependent ammonia-assimilating mechanism in the ctenidia of a giant clam. Coral Reefs 36:311–323. https://doi.org/10.1007/s00338-016-1502-4

    Article  Google Scholar 

  • Hiong KC, Cao-Pham AH, Choo CYL, Boo MV, Wong WP, Chew SF, Ip YK (2017b) Light-dependent expression of a Na+/H+ exchanger 3-like transporter in the ctenidium of the giant clam Tridacna squamosa can be related to increased H+ excretion during light-enhanced calcification. Physiol Rep 5:e13209. https://doi.org/10.14814/phy2.13209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ip YK, Ching B, Hiong KC, Choo CYL, Boo MV, Wong WP, Chew SF (2015) Light induces changes in activities of Na+/K+-ATPase, H+/K+-ATPase and glutamine synthetase in tissues involved directly or indirectly in light-enhanced calcification in the giant clam Tridacna squamosa. Front Physiol 6:68. https://doi.org/10.3389/fphys.2015.00068

    Article  PubMed  PubMed Central  Google Scholar 

  • Ip YK, Hiong KC, Goh EJK, Boo MV, Choo CYL, Ching B, Wong WP, Chew SF (2017) The whitish inner mantle of the giant clam Tridacna squamosa expresses an apical plasma membrane Ca2+-ATPase (PMCA) which displays light-dependent gene and protein expressions. Front Physiol 8:781. https://doi.org/10.3389/fphys.2017.00781

    Article  PubMed  PubMed Central  Google Scholar 

  • Ip YK, Hiong KC, Lim LJY, Choo CYL, Boo MV, Wong WP, Neo ML, Chew SF (2018) Molecular characterization light-dependent expression and cellular localization of a host vacuolar-type H+-ATPase (VHA) subunit A in the giant clam Tridacna squamosa indicate the involvement of the host VHA in the uptake of inorganic carbon and its supply to the symbiotic zooxanthellae. Gene 659:137–148. https://doi.org/10.1016/j.gene.2018.03.054

    Article  CAS  PubMed  Google Scholar 

  • Jurado LA, Chockalingam PS, Jarrett HW (1999) Apocalmodulin. Physiol Rev 79:661–682

    Article  CAS  Google Scholar 

  • Klumpp DW, Lucas JS (1994) Nutritional ecology of the giant clams Tridacna tevoroa and T. derasa from Tonga: influence of light on filter-feeding and photosynthesis. Mar Ecol Prog Ser 107:147–156

    Article  Google Scholar 

  • Koh CZY, Hiong KC, Choo CYL, Boo MV, Wong WP, Chew SF, Neo ML, Ip YK (2018) Molecular characterization of a Dual Domain Carbonic Anhydrase from the ctenidium of the giant clam Tridacna squamosa and its expression levels after light exposure cellular localization and possible role in the uptake of exogenous inorganic carbon. Front Physiol 9:281. https://doi.org/10.3389/fphys.2018.00281

    Article  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580

    Article  CAS  Google Scholar 

  • Marom M, Sebag A, Atlas D (2007) Cations residing at the selectivity filter of the voltage-gated Ca2+-channel modify fusion-pore kinetics. Channels (Austin) 1:377–386

    Article  Google Scholar 

  • Marshall AT (1996) Calcification in hermatypic and ahermatypic corals. Science 271:637–639

    Article  CAS  Google Scholar 

  • McConnaughey TA (1995) Ion transport and the generation of biomineral supersaturation. Bull Inst Oceanog Monaco 14:1–18

    Google Scholar 

  • Meir A, Bell DC, Stephens GJ, Page KM, Dolphin AC (2000) Calcium channel beta subunit promotes voltage-dependent modulation of alpha 1B by G beta gamma. Biophys J 79:731–746

    Article  CAS  Google Scholar 

  • Norton JH, Jones GW (1992) The giant clam: an anatomical and histological atlas. In: Australian Centre for International Agricultural Research Canberra, Australia

  • Peterson BZ, Catterall WA (1995) Calcium binding in the pore of L-type calcium channels modulates high affinity dihydropyridine binding. J Biol Chem 270:18201–18204

    Article  CAS  Google Scholar 

  • Peterson BZ, DeMaria CD, Adelman JP, Yue DT (1999) Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22:549–558

    Article  CAS  Google Scholar 

  • Pitt GS, Zühlke RD, Hudmon A, Schulman H, Reuter H, Tsien RW (2001) Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J Biol Chem 276:30794–30802

    Article  CAS  Google Scholar 

  • Pragnell M, De Waard M, Mori Y, Tanabe T, Snutch TP, Campbell KP (1994) Calcium channel β-subunit binds to a conserved motif in the I–II cytoplasmic linker of the α1-subunit. Nature 368:67–70

    Article  CAS  Google Scholar 

  • Sano Y, Kobayashi S, Shirai K, Takahata N, Matsumoto K, Watanabe T, Sowa K, Iwai K (2012) Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells. Nat Commun 3:761. https://doi.org/10.1038/ncomms1763

    Article  CAS  PubMed  Google Scholar 

  • Sillanpää JK, Sundh H, Sundell KS (2018) Calcium transfer across the outer mantle epithelium in the Pacific oyster, Crassostrea gigas. Proc R Soc B 285(1891):20181676

    Article  Google Scholar 

  • Tambutté E, Allemand D, Mueller E, Jaubert J (1996) A compartmental approach to the mechanism of calcification in hermatypic corals. J Exp Biol 199:1029–1041

    Google Scholar 

  • Tambutté S, Holcomb M, Ferrier-Pagès C, Reynaud S, Tambutté É, Zoccola D, Allemand D (2011) Coral biomineralization: from the gene to the environment. J Exp Mar Bio Ecol 408:58–78. https://doi.org/10.1016/J.JEMBE.2011.07.026

    Article  Google Scholar 

  • Terrak M, Wu G, Stafford WF, Lu RC, Dominguez R (2003) Two distinct myosin light chain structures are induced by specific variations within the bound IQ motifs-functional implications. EMBO J 22:362–371

    Article  CAS  Google Scholar 

  • Trench RK, Wethey DS, Porter JW (1981) Observations on the symbiosis with zooxanthellae among the Tridacninae (Mollusca Bivalvia). Biol Bull 161:180–198

    Article  Google Scholar 

  • Tyson JR, Snutch TP (2013) Molecular nature of voltage-gated calcium channels: structure and species comparison. Wiley Interdiscip Rev Membr Transp Signal 2:181–206

    Article  CAS  Google Scholar 

  • Van Petegem F, Chatelain FC, Minor DL (2005) Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain–Ca2+/calmodulin complex. Nat Struct Mol Biol 12:1108–1115

    Article  Google Scholar 

  • Vandermeulen JH, Davis ND, Muscatine L (1972) The effect of inhibitors of photosynthesis on zooxanthellae in corals and other marine invertebrates. Mar Biol 16:185–191

    Google Scholar 

  • Wang S, Zhang J, Jiao W, Li J, Xun X, Sun Y, Guo X, Huan P, Dong B, Zhang L (2017) Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat Ecol Evol 1:120. https://doi.org/10.1038/s41559-017-0120

    Article  PubMed  Google Scholar 

  • Watson SA (2015) Giant clams and rising CO2: light may ameliorate effects of ocean acidification on a solar-powered animal. PLoS One 10(6):e0128405.

    Article  Google Scholar 

  • Watson SA, Southgate PC, Miller GM, Moorhead JA, Knauer J (2012) Ocean acidification and warming reduce juvenile survival of the flutted giant clam Tridacna squamosa. Mollu Res 32:177–180

    Google Scholar 

  • Witcher DR, De Waard M, Liu H, Pragnell M, Campbell KP (1995) Association of native Ca2+ channel beta subunits with the alpha 1 subunit interaction domain. J Biol Chem 270:18088–18093

    Article  CAS  Google Scholar 

  • Yonge CM (1931) The significance of the relationship between corals and zooxanthellæ. Nature 128:309–311

    Article  Google Scholar 

  • Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) The physiology pathology and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 67:821–870

    Article  CAS  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

    Article  CAS  Google Scholar 

  • Zoccola D, Tambutté E, Sénégas-Balas F, Michiels JF, Failla JP, Jaubert J, Allemand D (1999) Cloning of a calcium channel α1 subunit from the reef-building coral Stylophora pistillata. Gene 227:157–167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Singapore Ministry of Education through grants (R-154-000-A37-114 and R-154-000-B69-114) to Y. K. Ip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuen K. Ip.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Communicated by H. V. Carey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao-Pham, A.H., Hiong, K.C., Boo, M.V. et al. Calcium absorption in the fluted giant clam, Tridacna squamosa, may involve a homolog of voltage-gated calcium channel subunit α1 (CACNA1) that has an apical localization and displays light-enhanced protein expression in the ctenidium. J Comp Physiol B 189, 693–706 (2019). https://doi.org/10.1007/s00360-019-01238-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-019-01238-4

Keywords

Navigation