Skip to main content
Log in

Effects of seasonal acclimatization on thermal tolerance of inward currents in roach (Rutilus rutilus) cardiac myocytes

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

To test the hypothesis of temperature-dependent deterioration of electrical excitability (TDEE) (Vornanen, J Exp Biol 219:1941–1952, 2016), the role of sodium (I Na) and calcium (I Ca) currents in heat tolerance of cardiac excitability was examined in a eurythermic fish, the roach (Rutilus rutilus). Densities of cardiac I Ca and I Na and their acute heat tolerance were measured in winter-acclimatized (WiR) and summer-acclimatized (SuR) fish maintained in the laboratory at 4 ± 1 and 18 ± 1 °C, respectively. A robust L-type Ca2+ current (I CaL), but no T-type Ca2+ current, was present in roach atrial and ventricular myocytes. Peak density of I CaL was smaller in atrial (− 1.97 ± 0.14 and − 1.75 ± 0.19 pA/pF for WiR and SuR, respectively) than ventricular myocytes (− 4.00 ± 0.59 and − 2.88 ± 0.47 pA/pF for WiR and SuR, respectively) (p < 0.05), but current density and heat tolerance of I CaL did not change between seasons in either cell type. In contrast to I Ca, marked differences appeared in I Na between WiR and SuR. I Na density was 38% higher in WiR than SuR atrial myocytes (− 80.03 ± 5.92 vs. − 49.77 ± 4.72 pA/pF; p < 0.05) and 48% higher in WiR than SuR ventricular myocytes (− 39.25 ± 3.06 vs. − 20.03 ± 1.79 pA/pF; p < 0.05). The winter increase in I Na density was associated with 55% (1.70 ± 0.27 vs. 0.77 ± 0.12) and 54% (1.08 ± 0.19 vs. 0.50 ± 0.10) up-regulation of the total Na+ channel (scn4 + scn5 + scn8) transcripts in atrium and ventricle, respectively (p < 0.05). Heat tolerance of atrial I Na was lower in WiR with a breakpoint temperature of 20.3 ± 1.2 °C than in SuR (23.8 ± 0.7 °C) (p < 0.05). The response of I Na to seasonal acclimatization conforms to the TDEE hypothesis. The lower heat tolerance of I Na in WiR is consistent with the lower heat tolerance of in vivo heart rate in WiR in comparison to SuR, but the match is not quantitatively perfect, suggesting that other factors in addition to I Na may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AP:

Action potential

CD:

Critical depolarization

f H :

Heart rate

HP:

Holding potential

I Ca :

Calcium current

I CaL :

L-type calcium current

I CaT :

T-type calcium current

I K1 :

Inward rectifier K+ current

I Na :

Sodium current

OCLTT:

Oxygen- and capacity-limited thermal tolerance hypothesis

SuR:

Summer-acclimatized roach

T BP :

Breakpoint temperature

TDEE:

Temperature-dependent deterioration of electrical excitability hypothesis

TP:

Threshold potential

V 0.5 :

Voltage for half-maximal of activation or inactivation of I CaL

WiR:

Winter-acclimatized roach

References

  • Abramochkin DV, Vornanen M (2016) Seasonal changes of cholinergic response in the atrium of Arctic navaga cod (Eleginus navaga). J Comp Physiol B 187:329–338

    Article  PubMed  Google Scholar 

  • Badr A, El-Sayed MF, Vornanen M (2016) Effects of seasonal acclimatization on temperature-dependence of cardiac excitability in the roach, Rutilus rutilus. J Exp Biol 219:1495–1504

    Article  CAS  PubMed  Google Scholar 

  • Badr A, Hassinen M, El-Sayed MF, Vornanen M (2017) Effects of seasonal acclimatization on action potentials and sarcolemmal K+ currents in roach (Rutilus rutilus) cardiac myocytes. Comp Biochem Physiol A 205:15–27

    Article  CAS  Google Scholar 

  • Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205

    Article  CAS  PubMed  Google Scholar 

  • Bers DM, Chen-Izu Y (2015) Sodium and calcium regulation in cardiac myocytes: from molecules to heart failure and arrhythmia. J Physiol 593:1327–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler K (1981) Heat death and cellular heat injury. J Therm Biol 6:171–178

    Article  CAS  Google Scholar 

  • Clark TD, Sandblom E, Cox GK, Hinch SG, Farrell AP (2008) Circulatory limits to oxygen supply during an acute temperature increase in the Chinook salmon (Oncorhynchus tshawytscha). Am J Physiol 295:R1631-R1639

    Google Scholar 

  • Cocking AW (1959) The effects of high temperatures on roach (Rutilus Rutilus): I. The effects of constant high temperatures. J Exp Biol 36:203–216

    CAS  Google Scholar 

  • Cohen CJ, Fozzard HA, Sheu SS (1982) Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Circ Res 50:651–662

    Article  CAS  PubMed  Google Scholar 

  • Cossins AR, Prosser CL (1978) Evolutionary adaptation of membranes to temperature. Proc Natl Acad Sci USA 75:2040–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrell AP (2009) Environment, antecedents and climate change: lessons from the study of temperature physiology and river migration of salmonids. J Exp Biol 212:3771–3780

    Article  CAS  PubMed  Google Scholar 

  • Fozzard HA (1977) Heart: excitation–contraction coupling. Ann Rev Physiol 39:201–220

    Article  CAS  Google Scholar 

  • Fozzard HA, Hanck DA (1996) Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev 76:887–926

    Article  CAS  PubMed  Google Scholar 

  • Fry FEJ (1947) Effects of the environment on animal activity. Univ Tor Stud Biol Ser 55 68:1–62

    Google Scholar 

  • Gollock MJ, Currie S, Petersen LH, Gamperl AK (2006) Cardiovascular and haematological responses of Atlantic cod (Gadus morhua) to acute temperature increase. J Exp Biol 209:2961–2970

    Article  CAS  PubMed  Google Scholar 

  • Haverinen J, Vornanen M (2004) Temperature acclimation modifies Na+ current in fish cardiac myocytes. J Exp Biol 207:2823–2833

    Article  CAS  PubMed  Google Scholar 

  • Haverinen J, Vornanen M (2006) Significance of Na+ current in the excitability of atrial and ventricular myocardium of the fish heart. J Exp Biol 209:549–557

    Article  CAS  PubMed  Google Scholar 

  • Haverinen J, Abramochkin DV, Kamkin A, Vornanen M (2017) The maximum heart rate in brown trout (Salmo trutta fario) is not limited by firing rate of pacemaker cells. Am J Physiol 312:R165-R171

    Google Scholar 

  • Kline RP, Morad M (1978) Potassium efflux in heart muscle during activity: extracellular accumulation and its implications. J Physiol 280:537–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunze DL (1977) Rate-dependent changes in extracellular potassium in the rabbit atrium. Circ Res 41:122–127

    Article  CAS  PubMed  Google Scholar 

  • Lagerspetz KYH (1987) Temperature effects on different organization levels in animals. Symp Soc Exp Biol 41:429–449

    CAS  PubMed  Google Scholar 

  • McDonald TF, Pelzer S, Trautwein W, Pelzer DJ (1994) Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74:365–507

    Article  CAS  PubMed  Google Scholar 

  • Pörtner HO (2001) Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146

    Article  PubMed  Google Scholar 

  • Pörtner HO (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893

    Article  PubMed  Google Scholar 

  • Prosser CL, Nelson D (1981) The role of nervous systems in temperature adaptation of poikilotherms. Annu Rev Physiol 43:281–300

    Article  CAS  PubMed  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Sandblom E, Axelsson M (2007) Venous hemodynamic responses to acute temperature increase in the rainbow trout (Oncorhynchus mykiss). Am J Physiol 292:R2292–R2298

    CAS  Google Scholar 

  • Shiels HA, Vornanen M, Farrell AP (2003) Acute temperature change modulates the response of I Ca to adrenergic stimulation in fish cardiomyocytes. Physiol Biochem Zool 76:816–824

    Article  CAS  PubMed  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escerichia coli. Proc Natl Acad Sci USA 71:522–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68

    Article  CAS  PubMed  Google Scholar 

  • Steinhausen MF, Sandblom E, Eliason EJ, Verhille C, Farrell AP (2008) The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon (Oncorhynchus nerka). J Exp Biol 211:3915–3926

    Article  CAS  PubMed  Google Scholar 

  • Tiitu V, Vornanen M (2003) Ryanodine and dihydropyridine receptor binding in ventricular cardiac muscle of fish with different temperature preferences. J Comp Physiol B 173:285–291

    Article  CAS  PubMed  Google Scholar 

  • Tikkanen E, Haverinen J, Egginton S, Hassinen M, Vornanen M (2017) Effects of prolonged anoxia on electrical activity of the heart in Crucian carp (Carassius carassius). J Exp Biol 220:445–454

    Article  PubMed  Google Scholar 

  • Ushakov B (1964) Thermostability of cells and proteins of poikilotherms and its significance in speciation. Physiol Rev 44:518–560

    Article  CAS  PubMed  Google Scholar 

  • Vornanen M (1997) Sarcolemmal Ca influx through L-type Ca channels in ventricular myocytes of a teleost fish. Am J Physiol 272:R1432-R1440

    Google Scholar 

  • Vornanen M (1998) L-type Ca current in fish cardiac myocytes: effects of thermal acclimation and β-adrenergic stimulation. J Exp Biol 201:533–547

    CAS  PubMed  Google Scholar 

  • Vornanen M (2016) The temperature-dependence of electrical excitability of fish heart. J Exp Biol 219:1941–1952

    Article  PubMed  Google Scholar 

  • Vornanen M, Hassinen M (2016) Zebrafish heart as a model for human cardiac electrophysiology. Channels (Austin) 10:101–110

    Article  Google Scholar 

  • Vornanen M, Paajanen V (2004) Seasonality of dihydropyridine receptor binding in the heart of an anoxia-tolerant vertebrate, the crucian carp (Carassius carassius L.). Am J Physiol 287:R1263–R1269

    CAS  Google Scholar 

  • Vornanen M, Hassinen M, Koskinen H, Krasnov A (2005) Steady-state effects of temperature acclimation on the transcriptome of the rainbow trout heart. Am J Physiol 289:R1177–R1184

    CAS  Google Scholar 

  • Vornanen M, Hassinen M, Haverinen J (2011) Tetrodotoxin sensitivity of the vertebrate cardiac Na+ current. Mar Drugs 9:2409–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vornanen M, Haverinen J, Egginton S (2014) Acute heat tolerance of cardiac excitation in the brown trout (Salmo trutta fario). J Exp Biol 217:299–309

    Article  PubMed  Google Scholar 

  • Wang DW, George AL, Bennett PB (1996) Comparison of heterologously expressed human cardiac and skeletal muscle sodium channels. Biophys J 70:238–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren KS, Baker K, Fishman MC (2001) The slow mo mutation reduces pacemaker current and heart rate in adult zebrafish. Am J Physiol 281:H1711–H1719

    CAS  Google Scholar 

  • Zhang S (2006) Isolation and characterization of I Kr in cardiac myocytes by Cs+ permeation. Am J Physiol 290:H1038–H1049

    CAS  Google Scholar 

Download references

Acknowledgements

AB was supported by a personal grant from the Ministry of Higher Education (Cultural affairs and missions sector) of Egypt and Finnish Cultural foundation. A research Grant from the Academy of Finland (#14955) to MV covered the material costs of the study. We thank Kari Ratilainen for catching the fish and Anita Kervinen for assistance in taking care of the fishes and preparing the solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Badr.

Ethics declarations

Ethical approval

All experiments were authorized by the national animal experimental board in Finland (permission ESAVI/2832/04.10.07/2015).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G. Heldmaier.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badr, A., Korajoki, H., Abu-Amra, ES. et al. Effects of seasonal acclimatization on thermal tolerance of inward currents in roach (Rutilus rutilus) cardiac myocytes. J Comp Physiol B 188, 255–269 (2018). https://doi.org/10.1007/s00360-017-1126-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-017-1126-1

Keywords

Navigation