A review of the physiology of a survival expert of big freeze, deep snow, and an empty stomach: the boreal raccoon dog (Nyctereutes procyonoides)

Review
  • 128 Downloads

Abstract

The raccoon dog (Nyctereutes procyonoides) is an invasive canid originating from eastern Asia. Here, we review its physiological adaptations to wintering, with an emphasis on northern Europe, where the raccoon dog spends the coldest part of the year in winter sleep. The timing of physiological changes related to wintering is connected to photoperiod by melatonin. In preparation to winter, raccoon dogs display autumnal hyperphagia and fattening probably regulated by the interaction of several peptide hormones. Sufficient fat deposition is essential for survival through the cold season and for reproduction in spring. The wintering strategy includes alternating periods of physical activity and passivity. Effective arousal and foraging during warmer bouts are enabled by normoglycaemia. During active periods, raccoon dogs are opportunistic participants in the food web, and they mainly utilize ungulate carcasses, plant material, and small mammals. Preferred wintertime habitats include watersides, forests, wetlands, and gardens. However, many food items become limited in mid-winter and snow restricts foraging leading to a negative energy balance. During passivity, energy is preserved by denning and by modest metabolic suppression, probably enabled by decreased thyroid hormone levels. Sleepiness and satiety could be maintained by high growth hormone and leptin concentrations. Several hormones participate in the extension of phase II of fasting with selective fatty acid mobilization and efficient protein conservation. The blood count, organ function tests, bone mass, and bone biomechanical properties exhibit high resistance against catabolism, and breeding can be successful after significant weight loss. The flexible physiological response to wintering is probably one reason enabling the successful colonization of this species into new areas.

Keywords

Fasting Fatty acid mobilization Passive wintering Seasonal endocrinology Winter sleep 

Abbreviations

AA

Amino acid

BM

Body mass

FA

Fatty acid

GH

Growth hormone

MR

Metabolic rate

MUFA

Monounsaturated fatty acid

PUFA

Polyunsaturated fatty acid

PYY

Peptide YY

SC

Subcutaneous

SFA

Saturated fatty acid

T3

Triiodothyronine

T4

Thyroxine

Ta

Ambient temperature

TAG

Triacylglycerols

Tb

Body temperature

UFA

Unsaturated fatty acid

References

  1. Ackman RG, Cunnane SC (1992) Long-chain polyunsaturated fatty acids: sources, biochemistry and nutritional/clinical applications. In: Padley FB (ed) Advances in applied lipid research, vol 1. JAI Press, London, pp 161–215Google Scholar
  2. Allen JA (1877) The influence of physical conditions in the genesis of species. Radic Rev 1:108–140Google Scholar
  3. Asikainen J, Mustonen A-M, Nieminen P, Pasanen S, Araja-Matilainen H, Hyvärinen H (2002) Reproduction of the raccoon dog (Nyctereutes procyonoides) after feeding or food deprivation in winter. J Anim Physiol Anim Nutr 86:367–375CrossRefGoogle Scholar
  4. Asikainen J, Mustonen A-M, Hyvärinen H, Nieminen P (2003) Seasonal reproductive endocrine profile of the raccoon dog (Nyctereutes procyonoides)—effects of melatonin and food deprivation. J Exp Zool 299A:180–187CrossRefGoogle Scholar
  5. Asikainen J, Mustonen A-M, Hyvärinen H, Nieminen P (2004) Seasonal physiology of the wild raccoon dog (Nyctereutes procyonoides). Zool Sci 21:385–391CrossRefPubMedGoogle Scholar
  6. Asikainen J, Mustonen A-M, Pyykönen T, Hänninen S, Mononen J, Nieminen P (2005) Adaptations of the raccoon dog (Nyctereutes procyonoides) to wintering—effects of restricted feeding or periodic fasting on lipids, sex steroids and reproduction. J Exp Zool 303A:861–871CrossRefGoogle Scholar
  7. Baltrūnaitė L (2006) Diet and winter habitat use of the red fox, pine marten and raccoon dog in Dzūkija National Park, Lithuania. Acta Zool Litu 16:46–53CrossRefGoogle Scholar
  8. Baltrūnaitė L (2010) Winter habitat use, niche breadth and overlap between the red fox, pine marten and raccoon dog in different landscapes of Lithuania. Folia Zool 59:278–284Google Scholar
  9. Bergmann C (1848) Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien, GöttingenGoogle Scholar
  10. Calder PC (2010) Omega-3 fatty acids and inflammatory processes. Nutrients 2:355–374CrossRefPubMedPubMedCentralGoogle Scholar
  11. Castellini MA, Rea LD (1992) The biochemistry of natural fasting at its limits. Experientia 48:575–582CrossRefPubMedGoogle Scholar
  12. Drygala F, Stier N, Zoller H, Mix HM, Bögelsack K, Roth M (2008a) Spatial organisation and intra-specific relationship of the raccoon dog Nyctereutes procyonoides in Central Europe. Wildl Biol 14:457–466CrossRefGoogle Scholar
  13. Drygala F, Stier N, Zoller H, Boegelsack K, Mix HM, Roth M (2008b) Habitat use of the raccon dog (Nyctereutes procyonoides) in north-eastern Germany. Mamm Biol 73:371–378CrossRefGoogle Scholar
  14. Herfindal I, Melis C, Åhlén P-A, Dahl F (2016) Lack of sex-specific movement patterns in an alien species at its invasion front—consequences for invasion speed. Ecol Evol 6:5570–5584CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ikeda T, Uchida K, Matsuura Y, Takahashi H, Yoshida T, Kaji K, Koizumi I (2016) Seasonal and diel activity patterns of eight sympatric mammals in northern Japan revealed by an intensive camera-trap survey. PLoS One 11:e0163602CrossRefPubMedPubMedCentralGoogle Scholar
  16. Irving L, Schmidt-Nielsen K, Abrahamsen NSB (1957) On the melting points of animal fats in cold climates. Physiol Zoöl 30:93–105CrossRefGoogle Scholar
  17. Jędrzejewski W, Jędrzejewska B, Szymura A (1989) Food niche overlaps in a winter community of predators in the Białowieża Primeval Forest, Poland. Acta Theriol 34:487–496CrossRefGoogle Scholar
  18. Käkelä R, Hyvärinen H (1996) Site-specific fatty acid composition in adipose tissues of several northern aquatic and terrestrial mammals. Comp Biochem Physiol 115B:501–514CrossRefGoogle Scholar
  19. Kauhala K (1992) Ecological characteristics of the raccoon dog in Finland. PhD dissertation, University of Helsinki, HelsinkiGoogle Scholar
  20. Kauhala K, Kowalczyk R (2011) Invasion of the raccoon dog Nyctereutes procyonoides in Europe: history of colonization, features behind its success, and threats to native fauna. Curr Zool 57:584–598CrossRefGoogle Scholar
  21. Kauhala K, Holmala K, Schregel J (2007) Seasonal activity patterns and movements of the raccoon dog, a vector of diseases and parasites, in southern Finland. Mamm Biol 72:342–353CrossRefGoogle Scholar
  22. Kinnunen S, Mänttäri S, Herzig K-H, Nieminen P, Mustonen A-M, Saarela S (2015) Maintenance of skeletal muscle energy homeostasis during prolonged wintertime fasting in the raccoon dog (Nyctereutes procyonoides). J Comp Physiol B 185:435–445CrossRefPubMedGoogle Scholar
  23. Kitao N, Fukui D, Hashimoto M, Osborne PG (2009) Overwintering strategy of wild free-ranging and enclosure-housed Japanese raccoon dogs (Nyctereutes procyonoides albus). Int J Biometeorol 53:159–165CrossRefPubMedGoogle Scholar
  24. Kitao N, Fukui D, Shibata H, Saito M, Osborne PG, Hashimoto M (2011) Seasonality and fasting effect in raccoon dog Nyctereutes procyonoides serum leptin levels determined by canine leptin-specific enzyme-linked immunosorbent assay. J Exp Zool 315A:84–89CrossRefGoogle Scholar
  25. Korhonen H (1987) Energy metabolism of raccoon dog (Nyctereutes procyonoides, Gray 1834): applied perspective to common farming practices. PhD dissertation, University of Kuopio, KuopioGoogle Scholar
  26. Korhonen H (1988) Regulation of energy economy in raccoon dogs and blue foxes: a process of dynamic interactions. Comp Biochem Physiol 91A:263–268CrossRefGoogle Scholar
  27. Korhonen H, Harri M (1984) Seasonal changes in thermoregulation of the raccoon dog (Nyctereutes procyonoides Gray 1834). Comp Biochem Physiol 77A:213–219CrossRefGoogle Scholar
  28. Korhonen H, Harri M (1986) Heat loss of farmed raccoon dogs and blue foxes as evaluated by infrared thermography and body cooling. Comp Biochem Physiol 84A:361–364CrossRefGoogle Scholar
  29. Korhonen H, Harri M (1989) Wintering strategy of the raccoon dog as judged from its thermoregulatory properties. Aquilo Ser Zool 24:29–36Google Scholar
  30. Korhonen H, Harri M, Asikainen J (1983) Thermoregulation of polecat and raccoon dog: a comparative study with stoat, mink and blue fox. Comp Biochem Physiol 74A:225–230CrossRefGoogle Scholar
  31. Korhonen H, Harri M, Asikainen J (1984) Moulting and seasonal pelage variations in the raccoon dog. Acta Theriol 29:77–88CrossRefGoogle Scholar
  32. Korhonen H, Harri M, Hohtola E (1985) Response to cold in the blue fox and raccoon dog as evaluated by metabolism, heart rate and muscular shivering: a re-evaluation. Comp Biochem Physiol 82A:959–964CrossRefGoogle Scholar
  33. Korhonen H, Mononen J, Harri M (1991) Evolutionary comparison of energy economy between Finnish and Japanese raccoon dogs. Comp Biochem Physiol 100A:293–295CrossRefGoogle Scholar
  34. Kowalczyk R, Zalewski A (2011) Adaptation to cold and predation—shelter use by invasive raccoon dogs Nyctereutes procyonoides in Białowieża Primeval Forest (Poland). Eur J Wildl Res 57:133–142CrossRefGoogle Scholar
  35. Kowalczyk R, Jędrzejewska B, Zalewski A, Jędrzejewski W (2008) Facilitative interactions between the Eurasian badger (Meles meles), the red fox (Vulpes vulpes), and the invasive raccoon dog (Nyctereutes procyonoides) in Białowieża Primeval Forest, Poland. Can J Zool 86:1389–1396CrossRefGoogle Scholar
  36. Lawler DF, Evans RH, Nieminen P, Mustonen A-M, Smith GK (2012) Lessons from a non-domestic canid: joint disease in captive raccoon dogs (Nyctereutes procyonoides). Vet Ital 48:367–378PubMedGoogle Scholar
  37. Melis C, Herfindal I, Kauhala K, Andersen R, Høgda K-A (2010) Predicting animal performance through climatic and plant phenology variables: the case of an omnivore hibernating species in Finland. Mamm Biol 75:151–159CrossRefGoogle Scholar
  38. Mustonen A-M, Nieminen P, Hyvärinen H, Asikainen J (2001) Effects of seasonality and fasting on the body mass and plasma growth hormone concentrations of the raccoon dog (Nyctereutes procyonoides) and the blue fox (Alopex lagopus). Z Naturforsch 56c:437–443Google Scholar
  39. Mustonen A-M, Nieminen P, Puukka M, Asikainen J, Saarela S, Karonen S-L, Kukkonen JVK, Hyvärinen H (2004a) Physiological adaptations of the raccoon dog (Nyctereutes procyonoides) to seasonal fasting-fat and nitrogen metabolism and influence of continuous melatonin treatment. J Comp Physiol B 174:1–12CrossRefPubMedGoogle Scholar
  40. Mustonen A-M, Nieminen P, Asikainen J, Saarela S, Kukkonen JVK, Hyvärinen H (2004b) Continuous melatonin treatment and fasting in the raccoon dog (Nyctereutes procyonoides) – vernal body weight regulation and reproduction. Zool Sci 21:163–172CrossRefPubMedGoogle Scholar
  41. Mustonen A-M, Asikainen J, Kauhala K, Paakkonen T, Nieminen P (2007a) Seasonal rhythms of body temperature in the free-ranging raccoon dog (Nyctereutes procyonoides) with special emphasis on winter sleep. Chronobiol Int 24:1095–1107CrossRefPubMedGoogle Scholar
  42. Mustonen A-M, Käkelä R, Käkelä A, Pyykönen T, Aho J, Nieminen P (2007b) Lipid metabolism in the adipose tissues of a carnivore, the raccoon dog, during prolonged fasting. Exp Biol Med 232:58–69Google Scholar
  43. Mustonen A-M, Asikainen J, Aho J, Nieminen P (2007c) Selective seasonal fatty acid accumulation and mobilization in the wild raccoon dog (Nyctereutes procyonoides). Lipids 42:1155–1167CrossRefPubMedGoogle Scholar
  44. Mustonen A-M, Lempiäinen T, Aspelund M, Hellstedt P, Ikonen K, Itämies J, Vähä V, Erkinaro J, Asikainen J, Kunnasranta M, Niemelä P, Aho J, Nieminen P (2012) Application of change-point analysis to determine winter sleep patterns of the raccoon dog (Nyctereutes procyonoides) from body temperature recordings and a multi-faceted dietary and behavioral study of wintering. BMC Ecol 12:27CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mustonen A-MJ, Finnilä MAJ, Puukka KS, Jämsä TJ, Saarakkala S, Tuukkanen JK, Nieminen TP (2017) Raccoon dog model shows preservation of bone during prolonged catabolism and reduced physical activity. J Exp Biol 220:2196–2202PubMedGoogle Scholar
  46. Nieminen P, Mustonen A-M, Asikainen J, Hyvärinen H (2002) Seasonal weight regulation of the raccoon dog (Nyctereutes procyonoides): interactions between melatonin, leptin, ghrelin, and growth hormone. J Biol Rhythms 17:155–163CrossRefPubMedGoogle Scholar
  47. Nieminen P, Saarela S, Pyykönen T, Asikainen J, Mononen J, Mustonen A-M (2004) Endocrine response to fasting in the overwintering captive raccoon dog (Nyctereutes procyonoides). J Exp Zool 301A:919–929CrossRefGoogle Scholar
  48. Nieminen P, Hohtola E, Pyykönen T, Paakkonen T, Aho J, Cittová-Kontu M, Asikainen J, Mononen J, Mustonen A-M (2005) Thermoregulatory adaptations of the overwintering captive raccoon dog (Nyctereutes procyonoides) in boreal climate. J Exp Zool 303A:776–784CrossRefGoogle Scholar
  49. Nieminen P, Finnilä MAJ, Tuukkanen J, Jämsä T, Mustonen A-M (2011) Preservation of bone mass and biomechanical properties during winter sleep—the raccoon dog (Nyctereutes procyonoides) as a novel model species. Bone 48:878–884CrossRefPubMedGoogle Scholar
  50. Nieminen P, Käkelä R, Paakkonen T, Halonen T, Mustonen A-M (2013) Fatty acid modifications during autumnal cold-hardening in an obligatory ectoparasite, the deer ked (Lipoptena cervi). J Insect Physiol 59:631–637CrossRefPubMedGoogle Scholar
  51. Raclot T (2003) Selective mobilization of fatty acids from adipose tissue triacylglycerols. Prog Lipid Res 42:257–288CrossRefPubMedGoogle Scholar
  52. Sidorovich VE, Polozov AG, Lauzhel GO, Krasko DA (2000) Dietary overlap among generalist carnivores in relation to the impact of the introduced raccoon dog Nyctereutes procyonoides on native predators in northern Belarus. Z Säugetierkd 65:271–285Google Scholar
  53. Siivonen L (1972) The raccoon dog (Supikoira). In: Siivonen L (ed) The mammals in Finland 2 (Suomen nisäkkäät 2). Otava, Helsinki, pp 140–148 (in Finnish) Google Scholar
  54. Sokolov EA (1949) Seasonal changes in the basic metabolism in the raccoon dog Nyctereutes procyonoides (Сезонные изменения в основном обмене у енотовидной собаки Nyctereutes procyonoides). Труды московского пушно-мехового института 2:3–27 (in Russian) Google Scholar
  55. Süld K, Saarma U, Valdmann H (2017) Home ranges of raccoon dogs in managed and natural areas. PLoS One 12:e0171805CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sutor A, Kauhala K, Ansorge H (2010) Diet of the raccoon dog Nyctereutes procyonoides – a canid with an opportunistic foraging strategy. Acta Theriol 55:165–176CrossRefGoogle Scholar
  57. Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B, Later W, Heymsfield SB, Müller MJ (2010) Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr 92:1369–1377CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Faculty of Health Sciences, School of Medicine, Institute of Biomedicine/AnatomyUniversity of Eastern FinlandKuopioFinland
  2. 2.Faculty of Science and Forestry, Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations