Energy conserving thermoregulatory patterns and lower disease severity in a bat resistant to the impacts of white-nose syndrome

  • Marianne S. Moore
  • Kenneth A. Field
  • Melissa J. Behr
  • Gregory G. Turner
  • Morgan E. Furze
  • Daniel W. F. Stern
  • Paul R. Allegra
  • Sarah A. Bouboulis
  • Chelsey D. Musante
  • Megan E. Vodzak
  • Matthew E. Biron
  • Melissa B. Meierhofer
  • Winifred F. Frick
  • Jeffrey T. Foster
  • Daryl Howell
  • Joseph A. Kath
  • Allen Kurta
  • Gerda Nordquist
  • Joseph S. Johnson
  • Thomas M. Lilley
  • Benjamin W. Barrett
  • DeeAnn M. Reeder
Original Paper

Abstract

The devastating bat fungal disease, white-nose syndrome (WNS), does not appear to affect all species equally. To experimentally determine susceptibility differences between species, we exposed hibernating naïve little brown myotis (Myotis lucifugus) and big brown bats (Eptesicus fuscus) to the fungus that causes WNS, Pseudogymnoascus destructans (Pd). After hibernating under identical conditions, Pd lesions were significantly more prevalent and more severe in little brown myotis. This species difference in pathology correlates with susceptibility to WNS in the wild and suggests that survival is related to different host physiological responses. We observed another fungal infection, associated with neutrophilic inflammation, that was equally present in all bats. This suggests that both species are capable of generating a response to cold tolerant fungi and that Pd may have evolved mechanisms for evading host responses that are effective in at least some bat species. These host–pathogen interactions are likely mediated not just by host physiological responses, but also by host behavior. Pd-exposed big brown bats, the less affected species, spent more time in torpor than did control animals, while little brown myotis did not exhibit this change. This differential thermoregulatory response to Pd infection by big brown bat hosts may allow for a more effective (or less pathological) immune response to tissue invasion.

Keywords

White-nose syndrome Pseudogymnoascus destructans Myotis lucifugus Eptesicus fuscus Fungal pathogen Species differences 

Supplementary material

360_2017_1109_MOESM1_ESM.csv (30 kb)
Supplementary material 1 (CSV 30 KB)

References

  1. Avena CV, Parfrey LW, Leff JW, Archer HM, Frick WF, Langwig KE, Kilpatrick AM, Powers KE, Foster JT, McKenzie VJ (2016) Deconstructing the bat skin microbiome: influences of the host and the environment. Front Microbiol 7:1753CrossRefPubMedPubMedCentralGoogle Scholar
  2. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 57:289–300Google Scholar
  3. Bernard RF, Foster JT, Willcox EV, Parise KL, McCracken GF (2015) Molecular detection of the causative agent of white-nose syndrome on Rafinesque’s big-eared bats (Corynorhinus rafinesquii) and two species of migratory bats in the southeastern USA. J Wildlife Dis 51:519–522CrossRefGoogle Scholar
  4. Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, Coleman JT, Darling SR, Gargas A, Niver R et al (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323:227CrossRefPubMedGoogle Scholar
  5. Brownlee-Bouboulis SA, Reeder DM (2013) White-nose syndrome-affected little brown myotis (Myotis lucifugus) increase grooming and other active behaviors during arousals from hibernation. J Wildlife Dis 49:850–859CrossRefGoogle Scholar
  6. Chai LY, Netea MG, Vonk AG, Kullberg BJ (2009) Fungal strategies for overcoming host innate immune response. Med Mycol 47:227–236CrossRefPubMedGoogle Scholar
  7. Chaturvedi V, Springer DJ, Behr MJ, Ramani R, Li X, Peck MK, Ren P, Bopp DJ, Wood B, Samsonoff WA, Butchkoski CM (2010) Morphological and molecular characterizations of psychrophilic fungus Geomyces destructans from New York bats with white nose syndrome (WNS). PLoS One 5:e10783CrossRefPubMedPubMedCentralGoogle Scholar
  8. Courtin F, Stone WB, Risatti G, Gilbert K, Van Kruiningen HJ (2010) Pathogenic findings and liver elements in hibernating bats with white-nose syndrome. Vet Pathol 47:214–219CrossRefPubMedGoogle Scholar
  9. Cryan PM, Meteyer CU, Boyles JG, Blehert DS (2010) Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol 8:135CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dobson A, Foufopoulos J (2001) Emerging infectious pathogens of wildlife. Philos Trans R Soc Lond B Biol Sci 356:1001–1012CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dunbar MB, Brigham RM (2010) Thermoregulatory variation among populations of bats along a latitudinal gradient. J Comp Phys B 180:885–893CrossRefGoogle Scholar
  12. Field KA, Johnson JS, Lilley TM, Reeder SM, Rogers EJ, Behr MJ, Reeder DM (2015) The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. PLoS Pathog 11:e1005168CrossRefPubMedPubMedCentralGoogle Scholar
  13. Francl KE, Sparks DW, Brack V, Timpone J (2011) White-nose syndrome and wing damage index scores among summer bats in the northeastern United States. J Wildlife Dis 47:41–48CrossRefGoogle Scholar
  14. Frank CL, Michalski A, McDonough AA, Rahimian M, Rudd RJ, Herzog C (2014) The resistance of a North American bat species (Eptesicus fuscus) to white-nose syndrome (WNS). PLoS One 9:e113958CrossRefPubMedPubMedCentralGoogle Scholar
  15. Frank CL, Ingala MR, Ravenelle RE, Dougherty-Howard K, Wicks SO, Herzog C, Rudd RJ (2016) The effects of cutaneous fatty acids on the growth of Pseudogymnoascus destructans, the etiological agent of white-nose syndrome (WNS). PloS One 11:e0153535CrossRefPubMedPubMedCentralGoogle Scholar
  16. Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, Butchkoski CM, Kunz TH (2010) An emerging disease causes regional population collapse of a common North American bat species. Science 329:679–682CrossRefPubMedGoogle Scholar
  17. Frick WF, Puechmaille SJ, Hoyt JR, Nickel BA, Langwig KE, Foster JT, Barlow KE, Bartonička T, Feller D, Haarsma AJ (2015) Disease alters macroecological patterns of North American bats. Global Ecol Biogeogr 24:741–749CrossRefGoogle Scholar
  18. Fuller NW, Reichard JD, Nabhan ML, Fellows SR, Pepin LC, Kunz TH (2011) Free-ranging little brown myotis (Myotis lucifugus) heal from wing damage associated with white-nose syndrome. Ecohealth 8:154–162CrossRefPubMedGoogle Scholar
  19. Gargas A, Trest MT, Christensen M, Volk TJ, Blehert DS (2009) Geomyces destructans sp nov associated with bat white-nose sydrome. Mycotaxon 108:147–154CrossRefGoogle Scholar
  20. Grieneisen LE, Brownlee-Bouboulis SA, Johnson JS, Reeder DM (2015) Sex and hibernaculum temperature predict survivorship in white-nose syndrome affected little brown myotis (Myotis lucifugus). R Soc Open Sci 2:140470CrossRefPubMedPubMedCentralGoogle Scholar
  21. Halsall AL, Boyles JG, Whitaker JO (2012) Body temperature patterns of big brown bats during winter in a building hibernaculum. J Mammal 93:497–503CrossRefGoogle Scholar
  22. Hayman DTS, Pulliam JRC, Marshall JC, Cryan PM, Webb CT (2016) Environment, host, and fungal traits predict continental-scale white-nose syndrome in bats. Sci Adv 2:e1500831CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hoyt JR, Cheng TL, Langwig KE, Hee MM, Frick WF, Kilpatrick AM (2015) Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome. PLoS One 10:e0121329CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hoyt JR, Sun K, Parise KL, Lu G, Langwig KE, Jiang T, Yang S, Frick WF, Kilpatrick AM, Foster JT, Feng J (2016) Widespread bat white-nose syndrome fungus, northeastern China. Emerg Infect Dis 22:140–142CrossRefPubMedPubMedCentralGoogle Scholar
  25. Johnson JS, Reeder DM, McMichael JW 3rd, Meierhofer MB, Stern DW, Lumadue SS, Sigler LE, Winters HD, Vodzak ME, Kurta A et al (2014) Host, pathogen, and environmental characteristics predict white-nose syndrome mortality in captive little brown myotis (Myotis lucifugus). PLoS One 9:e112502CrossRefPubMedPubMedCentralGoogle Scholar
  26. Johnson JS, Reeder DM, Lilley TM, Czirják GÁ, Voigt CC, McMichael JW 3rd, Meierhofer MB, Seery CW, Lumadue SS, Altmann AJ et al (2015) Antibodies to Pseudogymnoascus destructans are not sufficient for protection against white-nose syndrome. Ecol Evol 5:2203–2214CrossRefPubMedPubMedCentralGoogle Scholar
  27. Langwig KE, Frick WF, Bried JT, Hicks AC, Kunz TH, Kilpatrick AM (2012) Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol Lett 15:1050–1057CrossRefPubMedGoogle Scholar
  28. Langwig KE, Frick WF, Reynolds R, Parise KL, Drees KP, Hoyt JR, Cheng TL, Kunz TH, Foster JT, Kilpatrick AM (2015) Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome. Proc Roy Soci Lond B: Biol Sci 282:20142335CrossRefGoogle Scholar
  29. Leopardi S, Blake D, Puechmaille SJ (2015) White-nose syndrome fungus introduced from Europe to North America. Curr Biol 25:R217–R219CrossRefPubMedGoogle Scholar
  30. Lilley TM, Prokkola JM, Johnson JS, Rogers EJ, Gronsky S, Kurta A, Reeder DM, Field KA (2017) Immune responses in hibernating little brown myotis (Myotis lucifugus) with white-nose syndrome. Proc Roy Soci Lond B: Biol Sci. doi:10.1098/rspb.2016.2232 Google Scholar
  31. Lorch JM, Meteyer CU, Behr MJ, Boyles JG, Cryan PM, Hicks AC, Ballmann AE, Coleman JT, Redell DN, Reeder DM et al (2011) Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480:376–378CrossRefPubMedGoogle Scholar
  32. Meteyer CU, Buckles EL, Blehert DS, Hicks AC, Green DE, Shearn-Bochsler V, Thomas NJ, Gargas A, Behr MJ (2009) Histopathologic criteria to confirm white-nose syndrome in bats. J Vet Diagn Invest 21:411–414CrossRefPubMedGoogle Scholar
  33. Meteyer CU, Barber D, Mandl JN (2012) Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence 3:583–588CrossRefPubMedPubMedCentralGoogle Scholar
  34. Moore MS, Reichard JD, Murtha TD, Zahedi B, Fallier RM, Kunz TH (2011) Specific alterations in complement protein activity of little brown myotis (Myotis lucifugus) hibernating in white-nose syndrome affected sites. PLoS One 6:e27430CrossRefPubMedPubMedCentralGoogle Scholar
  35. Moore MS, Reichard JD, Murtha TD, Nabhan ML, Pian RE, Ferreira JS, Kunz TH (2013) Hibernating little brown myotis (Myotis lucifugus) show variable immunological responses to white-nose syndrome. PloS One 8:e58976CrossRefPubMedPubMedCentralGoogle Scholar
  36. Muller LK, Lorch JM, Lindner DL, O’Connor M, Gargas A, Blehert DS (2013) Bat white-nose syndrome: a real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans. Mycologia 105:253–259CrossRefPubMedGoogle Scholar
  37. Pikula J, Bandouchova H, Novotný L, Meteyer CU, Zukal J, Irwin NR, Zima J, Martínkova N (2011) Histopathology confirms white-nose syndrome in bats in Europe. J Wildlife Dis 48:207–211CrossRefGoogle Scholar
  38. Puechmaille SJ, Wibbelt G, Korn V, Fuller H, Forget F, Mühldorfer AK, Bogdanowicz W, Borel C, Bosch T, Cherezy T et al (2011) Pan-European distribution of white-nose syndrome fungus (Geomyces destructans) not associated with mass mortality. PLoS One 6:e19167CrossRefPubMedPubMedCentralGoogle Scholar
  39. Reeder DM, Moore MS (2013) White-nose syndrome: a deadly emerging infectious disease of hibernating bats. In: Adams RA, Pederson SC (eds) Bat evolution, ecology, and conservation. Springer, New York, pp 413–434CrossRefGoogle Scholar
  40. Reeder DM, Frank CL, Turner GG, Meteyer CU, Kurta A, Britzke ER, Vodzak ME, Darling SR, Stihler CW, Hicks AC et al (2012) Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS One 7:e38920CrossRefPubMedPubMedCentralGoogle Scholar
  41. Reeder DM, Field KA, Slater MH (2016) Balancing the costs of wildlife research with the benefits of understanding a panzootic disease, white-nose syndrome. The Institute for Laboratory Animal Research (ILAR) Journal 56:275–282CrossRefGoogle Scholar
  42. Reichard JD, Kunz TH (2009) White-nose syndrome inflicts lasting injuries to the wings of little brown myotis (Myotis lucifugus). Acta Chiropterol 11:457–464CrossRefGoogle Scholar
  43. Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11:275–288CrossRefPubMedGoogle Scholar
  44. Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134CrossRefGoogle Scholar
  45. Storm JJ, Boyles JG (2011) Body temperature and body mass of hibernating little brown bats Myotis lucifugus in hibernacula affected by white-nose syndrome. Acta Theriol 56:123–127CrossRefGoogle Scholar
  46. Thogmartin WE, King RA, McKann PC, Szymanski JA, Pruitt L (2012) Population-level impact of white-nose syndrome on the endangered Indiana bat. J Mammal 93:1086–1098CrossRefGoogle Scholar
  47. Thogmartin WE, Sanders-Reed CA, Szymanski JA, McKann PC, Pruitt L, King RA, Runge MC, Russell RE (2013) White-nose syndrome is likely to extirpate the endangered Indiana bat over large parts of its range. Biol Conserv 160:162–172CrossRefGoogle Scholar
  48. Thomas DW, Dorais M, Bergeron J-M (1990) Winter energy budgets and cost of arousals for hibernating little brown bats, Myotis lucifugus. J Mammal 71:475–479CrossRefGoogle Scholar
  49. Tompkins DM, Carver S, Jones ME, Krkošek M, Skerratt LF (2015) Emerging infectious diseases of wildlife: a critical perspective. Trends Parisitol 31:149–159CrossRefGoogle Scholar
  50. Turner GG, Reeder DM, Coleman JTH (2011) A five-year assessment of mortality and geographic spread of white-nose syndrome in North American bats and a look to the future. Bat Res News 52:13–27Google Scholar
  51. Turner GG, Meteyer CU, Barton H, Gumbs JF, Reeder DM, Overton B, Bandouchova H, Bartonicka T, Martinkova N, Pikula J et al (2014) Nonlethal screening of bat-wing skin with the use of ultraviolet fluorescence to detect lesions indicative of white-nose syndrome. J Wildlife Dis 50:566–573CrossRefGoogle Scholar
  52. USFWS (2012) News Release: North American bat death toll exceeds 5.5 million from white-nose syndrome. http://www.fws.gov/whitenosesyndrome/pdf/WNS_Mortality_2012_NR_FINAL.pdf. Accessed 4 May 2012
  53. Verant ML, Boyles JG, Waldrep W Jr, Wibbelt G, Blehert DS (2012) Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome. PLoS One 7:e46280CrossRefPubMedPubMedCentralGoogle Scholar
  54. Verant ML, Meteyer CU, Speakman JR, Cryan PM, Lorch JM, Blehert DS (2014) White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol 14:10CrossRefPubMedPubMedCentralGoogle Scholar
  55. Warnecke L, Turner JM, Bollinger TK, Lorch JM, Misra V, Cryan PM, Wibbelt G, Blehert DS, Willis CKR (2012) Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc Nat Acad Sci USA 109:6999–7003CrossRefPubMedPubMedCentralGoogle Scholar
  56. Warnecke L, Turner JM, Bollinger TK, Misra V, Cryan PM, Blehert DS, Wibbelt G, Willis CKR (2013) Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality. Biol Lett 9:20130177CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  58. Wilcox A, Warnecke L, Turner JM, McGuire LP, Jameson JW, Misra V, Bollinger TC, Willis CKR (2014) Behaviour of hibernating little brown bats experimentally inoculated with the pathogen that causes white-nose syndrome. Anim Behav 88:157–164CrossRefGoogle Scholar
  59. Wilder AP, Frick WF, Langwig KE, Kunz TH (2011) Risk factors associated with mortality from white-nose syndrome among hibernating bat colonies. Biol Lett 7:950–953CrossRefPubMedPubMedCentralGoogle Scholar
  60. Willis CKR, Brigham RM (2003) Defining torpor in free-ranging bats: experimental evaluation of external temperature-sensitive radiotransmitters and the concept of active temperature. J Comp Physiol B 173:379–389CrossRefPubMedGoogle Scholar
  61. Willis CKR, Menzies AK, Boyles JG, Wojciechowski MS (2011) Evaporative water loss is a plausible explanation for mortality of bats from white-nose syndrome. Integr Comp Biol 51:364–373CrossRefPubMedGoogle Scholar
  62. Zukal J, Bandouchova H, Bartonicka T, Berkova H, Brack V, Brichta J, Dolinay M, Jaron KS, Kovacova V, Kovarik M et al (2014) White-nose syndrome fungus: a generalist pathogen of hibernating bats. PLoS One 9:e97224CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Marianne S. Moore
    • 1
    • 2
  • Kenneth A. Field
    • 1
  • Melissa J. Behr
    • 3
  • Gregory G. Turner
    • 4
  • Morgan E. Furze
    • 1
  • Daniel W. F. Stern
    • 1
  • Paul R. Allegra
    • 1
  • Sarah A. Bouboulis
    • 1
  • Chelsey D. Musante
    • 1
  • Megan E. Vodzak
    • 1
  • Matthew E. Biron
    • 1
  • Melissa B. Meierhofer
    • 1
  • Winifred F. Frick
    • 5
  • Jeffrey T. Foster
    • 6
    • 7
  • Daryl Howell
    • 8
  • Joseph A. Kath
    • 9
  • Allen Kurta
    • 10
  • Gerda Nordquist
    • 11
  • Joseph S. Johnson
    • 1
    • 12
  • Thomas M. Lilley
    • 1
  • Benjamin W. Barrett
    • 1
  • DeeAnn M. Reeder
    • 1
  1. 1.Department of BiologyBucknell UniversityLewisburgUSA
  2. 2.College of Integrative Sciences and ArtsArizona State University at the Polytechnic CampusMesaUSA
  3. 3.Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Pennsylvania Game CommissionHarrisburgUSA
  5. 5.Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzUSA
  6. 6.Center for Microbial Genetics and GenomicsNorthern Arizona UniversityFlagstaffUSA
  7. 7.Department of Molecular, Cellular and Biomedical ScienceUniversity of New HampshireDurhamUSA
  8. 8.Iowa Department of Natural ResourcesDes MoinesUSA
  9. 9.Illinois Department of Natural ResourcesSpringfieldUSA
  10. 10.Department of BiologyEastern Michigan UniversityYpsilantiUSA
  11. 11.Minnesota Department of Natural ResourcesSt. PaulUSA
  12. 12.Department of Biological SciencesOhio UniversityAthensUSA

Personalised recommendations