Skip to main content
Log in

Effects of acute and chronic hypoxia on acid–base regulation, hematology, ion, and osmoregulation of juvenile American paddlefish

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Despite the increasing prevalence of hypoxia in natural habitats occupied by the American paddlefish, basal bony fish, and ram ventilator, information about its response to hypoxia is scarce. To understand the physiological and biochemical responses of juvenile paddlefish (~150 g) to acute (<24 h) and chronic hypoxia (≥24 h), blood oxygen transport, blood acid–base balance, and metabolic stress were evaluated under four different partial pressures of oxygen [pO2; normoxia (148 mmHg), mild hypoxia (89 mmHg), moderate hypoxia (59 mmHg), and extreme hypoxia (36 mmHg)], all at 21 °C. Arterial blood samples were collected from paddlefish after they had been exposed to treatments for 0.25, 2, 6, 24, and 72 h, and analyzed for hematocrit, pO2, total oxygen content, oxygen saturation, pCO2, pH, hemoglobin, Na+, K+, Ca2+, Cl, glucose, and lactate. Mild hypoxia only caused a reduction in blood pO2 and oxygen saturation. Both acute and chronic moderate and extreme hypoxia caused a decrease in blood pH, pO2, total oxygen content, plasma Na+, and Cl at all time points. Acute moderate and extreme hypoxia resulted in an increase in blood pCO2, plasma glucose, lactate, and hematocrit. Chronic exposure to moderate hypoxia resulted in an increase in plasma lactate, red blood cell count, and hemoglobin. This study shows that paddlefish are able to physiologically compensate for mild hypoxia, but exhibit secondary stress responses and are unable to return to homeostasis when exposed to both acute and chronic moderate hypoxia, and die after 3–8 h of extreme hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aboagye DL, Allen PJ (2014) Metabolic and locomotor responses of juvenile paddlefish Polyodon spathula to hypoxia and temperature. Comp Biochem Phys Part A Mol Integr Physiol 169:51–59

    Article  CAS  Google Scholar 

  • Arend KK, Beletsky D, DePINTO JV, Ludsin SA, Roberts JJ, Rucinski DK, Scavia D, Schwab DJ, Höök TO (2011) Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie. Freshw Biol 56(2):366–383

    Article  Google Scholar 

  • Baker DW, Wood AM, Kieffer JD (2005) Juvenile Atlantic and shortnose sturgeons (family: Acipenseridae) have different hematological responses to acute environmental hypoxia. Physiol Biochem Zool 78(6):916–925

    Article  CAS  PubMed  Google Scholar 

  • Baker DW, Matey V, Huynh KT, Wilson JM, Morgan JD, Brauner CJ (2009) Complete intracellular pH protection during extracellular pH depression is associated with hypercarbia tolerance in white sturgeon, Acipenser transmontanus. Am J Physiol Regul Integr Comp Physiol 296(6):R1868–R1880

    Article  CAS  PubMed  Google Scholar 

  • Baldisserotto B, Chippari-Gomes AR, Lopes NP, Bicudo JEPW, Paula-Silva MN, Almeida-Val VMF, Val AL (2008) Ion fluxes and hematological parameters of two teleosts from the Rio Negro, Amazon, exposed to hypoxia. Braz J Biol 68(3):571–575

    Article  CAS  PubMed  Google Scholar 

  • Barton BA (1997) Stress in finfish: past, present and future-a historical perspective. In: Iwama GW, Pickering AD, Sumpter JP, Schreck CB (eds) Fish stress and health in aquaculture, pp. 1–34. Society for experimental biology seminar series 62. Cambridge University Press, Cambridge

    Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–525

    Article  CAS  PubMed  Google Scholar 

  • Berenbrink M, Koldkjær P, Kepp O, Cossins AR (2005) Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307(5716):1752–1757

    Article  CAS  PubMed  Google Scholar 

  • Bond CE (1979) Biology of fishes. Holt, Rinehart, and Winston, Philadelphia, p 512

    Google Scholar 

  • Brauner CJ, Baker DW (2009) Patterns of acid–base regulation during exposure to hypercarbia in fishes. In: Glass ML, Wood SC (eds) Cardio-respiratory Control in vertebrates. Springer, Berlin, pp 43–63

    Chapter  Google Scholar 

  • Brauner CJ, Berenbrink M (2007) Gas Transport and Exchange. In: McKenzie DJ, Farrell AP, Brauner CJ (eds) Fish physiology, vol 26: primitive fishes. Elsevier, Amsterdam, pp 213–282

    Chapter  Google Scholar 

  • Breitburg DL (2002) Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25:767–781

    Article  Google Scholar 

  • Burggren WW, Bemis WE (1992) Metabolism and ram ventilation in juvenile paddlefish Polyodon spathula (Chondrostei: Polyodontidae). Physiol Zool 65:515–539

    Article  Google Scholar 

  • Burggren WW, Cameron JN (1980) Anaerobic metabolism, gas exchange, and acid–base balance during hypoxic exposure in the channel catfish, Ictalurus punctatus. J Exp Zool 213(3):405–416

    Article  CAS  Google Scholar 

  • Burggren WW, Randall DJ (1978) Oxygen uptake and transport during hypoxic exposure in the sturgeon. Acipenser transmont Respir Physiol 34:171–183

    Article  CAS  PubMed  Google Scholar 

  • Cech JJ, Doroshov SI (2004) Environmental requirements, preferences, and tolerance limits of North American sturgeons. In: LeBreton GTO, Beamish FWH, McKinley RS (eds) Sturgeons and Paddlefish of North America. Kluwer Academic Publishers, Dordrecht, pp 73–86

    Google Scholar 

  • Chapman CA, Renshaw G (2009) Hematological responses of the grey carpet shark Chiloscyllium punctatum and the epaulette shark Hemiscyllium ocellatum to anoxia and re-oxygenation. J Exp Zool Part A Ecol Genet Physiol 311(6):422–438

    Article  Google Scholar 

  • Cnaani A, Hallerman EM, McLean E (2014) Physiological responses of yellow perch to hypoxia, air exposure, and bleeding. North Am J Aquac 76(4):423–429

    Article  Google Scholar 

  • Crocker CE, Cech JJ Jr (1997) Effects of environmental hypoxia on oxygen consumption rate and swimming activity in juvenile white sturgeon, Acipenser transmontanus, in relation to temperature and life intervals. Environ Biol Fishes 50(4):383–389

    Article  Google Scholar 

  • Crocker CE, Cech JJ (2002) The effects of dissolved gases on oxygen consumption rate and ventilation frequency in white sturgeon, Acipenser transmontanus. J Appl Ichthyol 18(4–6):338–340

    Article  Google Scholar 

  • Dapp DR, Huveneers C, Walker TI, Drew M, Reina RD (2016) Moving from measuring to predicting bycatch mortality: predicting the capture condition of a longline-caught pelagic shark. Front Mar Sci 2:126

    Article  Google Scholar 

  • Diaz RJ, Breitburg DL (2009) The hypoxic environment. In: Richards JG, Farrell AP, Brauner CJ (eds) Hypoxia in fishes. Elsevier, San Diego, pp 1–23

    Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85(1):97–177

    Article  CAS  PubMed  Google Scholar 

  • Grady J (2004) Polyodon spathula. The IUCN Red List of Threatened Species. Version 2014.3

  • Graham JB (1997) Air-breathing fishes. Evolution, diversity and adaptation. Academic Press, San Diego, p 299

    Google Scholar 

  • Harned DA, Atkins JB, Harvill JS (2004) Nutrient mass balance and trends, Mobile river basin, Alabama, Georgia, and Mississippi. J Am Water Resour Assoc 40(3):765–793

    Article  CAS  Google Scholar 

  • Harter TS, Shartau RB, Baker DW, Jackson DC, Val AL, Brauner CJ (2014) Preferential intracellular pH regulation represents a general pattern of pH homeostasis during acid–base disturbances in the armoured catfish, Pterygoplichthys pardalis. J Comp Physiol B 184(6):709–718

    Article  CAS  PubMed  Google Scholar 

  • Heisler N (1982) Transepithelial ion transfer processes as mechanisms for fish acid-base regulation in hypercapnia and lactacidosis. Can J Zool 60:1108–1122

    Article  CAS  Google Scholar 

  • Heisler N (1984) Acid-base regulation in fishes. In: Hoar WS, Randall DJ (eds) Fish physiology, vol. X A. Academic Press, New York, pp 315–401

    Google Scholar 

  • Heisler N (1986) Comparative aspects of acid-base regulation. In: Heisler N (ed) Acid-base regulation in animals. Elsevier, Amsterdam, pp 395–450

    Google Scholar 

  • Holeton GF, Randall DJ (1967) The effect of hypoxia on the partial pressures of gases in the blood and water afferent and efferent to the gills of rainbow trout. J Exp Biol 46:317–327

    CAS  PubMed  Google Scholar 

  • Jennings CA, Ziegler SJ (2000) Ecology and biology of paddlefish in North America: historical perspectives, management approaches and research priorities. Rev Fish Biol Fish 10:167–181

    Article  Google Scholar 

  • Jones JRE (1952) The reactions of fish to water of low oxygen concentration. J Exp Biol 29(3):403–415

    CAS  Google Scholar 

  • Kieffer JD, Baker DW, Wood AM, Papadopoulos CN (2011) The effects of temperature on the physiological response to low oxygen in Atlantic sturgeon. Fish Physiol Biochem 37(4):809–819

    Article  CAS  PubMed  Google Scholar 

  • Lai JC, Kakuta I, Mok HO, Rummer JL, Randall D (2006) Effects of moderate and substantial hypoxia on erythropoietin levels in rainbow trout kidney and spleen. J Exp Biol 209(14):2734–2738

    Article  CAS  PubMed  Google Scholar 

  • Larsen BK, Jensen FB (1997) Influence of ionic composition on acid-base regulation in rainbow trout, Oncorhynchus mykiss, exposed to environmental hypercapnia. Fish Physiol Biochem 16:157–170

    Article  CAS  Google Scholar 

  • Maxime V, Nonnotte G, Peyraud C, Williot P, Truchot JP (1995) Circulatory and respiratory effects of and hypoxic stress in the Siberian sturgeon. Respir Physiol 100(3):203–212

    Article  CAS  PubMed  Google Scholar 

  • Maxime V, Pichavant K, Boeuf G, Nonnotte G (2000) Effects of hypoxia on respiratory physiology of turbot, Scophthalmus maximus. Fish Physiol Biochem 22:51–59

    Article  CAS  Google Scholar 

  • Mazeaud MM, Mazeaud F (1981) Adrenergic responses to stress in fish. In: Pickering AD (ed) Stress and fish. Academic Press, New York, pp 49–75

    Google Scholar 

  • McDonald G, Milligan L (1997) Ionic, osmotic and acid-base regulation in stress. In: Iwama GK, Pickering AD, Sumpter JP, Schreck CB (eds) Fish stress and health in aquaculture. Society for Experimental Biology seminar series. vol 62. Cambridge University Press, Cambridge, pp. 119–145

    Google Scholar 

  • McDonald DG, Cavdek V, Ellis R (1991) Gill design in freshwater fishes: interrelationships among gas exchange, ion regulation, and acid-base regulation. Physiol Zool 64(1):103–123

    Article  Google Scholar 

  • Mckenzie DJ, Hale ME, Domenici P (2007) Locomotion in primitive fishes. Fish Physiol 26:319–380

    Article  Google Scholar 

  • Mettee MF, O’neil PE, Rider SJ (2009) Paddlefish movements in the lower Mobile River basin, Alabama. In: Paddlefish management, propagation, and conservation in the 21st century: building from 20 years of research and management (Eds. C.P. Paukert and G.D. Scholten), 63–81. American Fisheries Society, Symposium 66, Bethesda, MD

  • Nikinmaa M (2006) Gas transport. In: Evans DH, Claiborne JB (eds) The physiology of fishes. CRC Press, Boca Raton, pp 153–174

    Google Scholar 

  • Nikinmaa M, Salama A (1998) Oxygen transport in fish. In: Perry SF, Tufts BL (eds) Fish Physiology. Academic Press, London, pp 141–184

    Google Scholar 

  • Niklitschek EJ, Secor DH (2009) Dissolved oxygen, temperature and salinity effects on the ecophysiology and survival of juvenile Atlantic sturgeon in estuarine waters: I. Laboratory results. J Exp Mar Biol Ecol 381:S150–S160

    Article  Google Scholar 

  • Nilsson S (1986) Control of gill blood flow. In: Nilsson S (ed) Fish physiology: recent advances. Springer, Dordrect, pp 86–101

    Chapter  Google Scholar 

  • Nonnotte G, Maxime V, Truchot JP, Williot P, Peyraud C (1993) Respiratory responses to progressive hypoxia in the sturgeon. Acipenser baeri Respir Physiol 91:71–82

    Article  CAS  PubMed  Google Scholar 

  • Ott ME, Heisler N, Ultsch GR (1980) A re-evaluation of the relationship between temperature and the critical oxygen tension in freshwater fishes. Comp Biochem Physiol Part A Physiol 67(3):337–340

    Article  Google Scholar 

  • Patterson JT, Mims SD, Wright RA (2013) Effects of body mass and water temperature on routine metabolism of American paddlefish Polyodon spathula. J Fish Biol 82:1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Perry SF, Gilmour KM (2006) Acid–base balance and CO2 excretion in fish: unanswered questions and emerging models. Respir Physiol Neurobiol 154(1):199–215

    Article  CAS  PubMed  Google Scholar 

  • Pickering AD (1998) Stress responses of farmed fish. In: Black K, Pickering A (eds) Biology of farmed fish. Sheffield Academic Press, Sheffield, pp 222–255

    Google Scholar 

  • Pickering AD, Pottinger TG, Sumpter JP, Carragher JF, Le Bail PY (1991) Effects of acute and chronic stress on the levels of circulating growth hormone in the rainbow trout. Oncorhynchus mykiss General Comp Endocrinol 83(1):86–93

    Article  CAS  Google Scholar 

  • Postlethwaite E, Mcdonald D (1995) Mechanisms of Na+ and Cl regulation in freshwater-adapted rainbow trout Oncorhynchus mykiss, during exercise and stress. J Exp Biol 198(2):295–304

    CAS  PubMed  Google Scholar 

  • Qiwei W (2010) Psephurus gladius. The IUCN Red List of Threatened Species. Version 2014.3

  • Randall DJ, Cameron JN, Daxboeck C, Smatresk N (1981) Aspects of bimodal gas exchange in the bowfin, Amia calva (Actinopterygii: Amiiformes). Respir Physiol 43(3):339–348

    Article  CAS  PubMed  Google Scholar 

  • Regan MD, Brauner CJ (2010) The evolution of Root effect hemoglobins in the absence of intracellular pH protection of the red blood cell: insights from primitive fishes. J Comp Physiol B 180(5):695–706

    Article  CAS  PubMed  Google Scholar 

  • Richards JG (2009) Metabolic and molecular responses of fish to hypoxia. In: Richards JG, Farrell AP, Brauner CJ (eds) Hypoxia, vol 27. Elsevier, San Diego, pp 443–485

    Chapter  Google Scholar 

  • Richards JG (2011) Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J Exp Biol 214:191–199

    Article  PubMed  Google Scholar 

  • Riggs AF (1988) The Bohr effect. Annu Rev Physiol 50(1):181–204

    Article  CAS  PubMed  Google Scholar 

  • Romer AS (1967) Vertebrate paleontology, 3rd edn. University of Chicago Press, Chicago, p 484

    Google Scholar 

  • Rosen RA, Hales DC, Unkenholz DG (1982) Biology and exploitation of paddlefish in the Missouri River below Gavins Point Dam. Trans Am Fish Soc 111(2):216–222

    Article  Google Scholar 

  • Rummer JL, McKenzie DJ, Innocenti A, Supuran CT, Brauner CJ (2013) Root effect hemoglobin may have evolved to enhance general tissue oxygen delivery. Science 340(6138):1327–1329

    Article  CAS  PubMed  Google Scholar 

  • Secor DH, Gunderson TE (1998) Effects of hypoxia and temperature on survival, growth, and respiration of juvenile Atlantic sturgeon. Acipenser oxyrinchus Fish Bull 96(3):603–613

    Google Scholar 

  • Selye H (1950) Stress and the general adaptation syndrome. Br Med J 1(4667):1383–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siret JR, Carmena AO, Callejas J (1976) Erythrokinetic study in the fish manjuari. Atracosteus tristoechus Comp Biochem Physiol Part A A Physiol 55(2):127–128

    Article  CAS  Google Scholar 

  • Somero GN (1969) Enzymic mechanisms of temperature compensation: immediate and evolutionary effects of temperature on enzymes of aquatic poikilotherms. Am Nat 103(933):517–530

    Article  CAS  Google Scholar 

  • Thomas S, Perry SF (1992) Control and consequences of adrenergic activation of red blood cell Na+/H+ exchange on blood oxygen and carbon dioxide transport in fish. J Exp Zool 263(2):160–175

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Lefevre S, Thanh Huong DT, Cong NV, Bayley M (2009) The effects of hypoxia on growth and digestion. Fish Physiol 27:361–396

    Article  CAS  Google Scholar 

  • Weber RE, Sullivan B, Bonaventura J, Bonaventura C (1976) The hemoglobin system of the primitive fish, Amia calva: isolation and functional characterization of the individual hemoglobin components. Biochim et Biophysica Acta (BBA)-Protein Struct 434(1):18–31

    Article  CAS  Google Scholar 

  • Wells RM (2009) Blood-gas transport and hemoglobin function: adaptations for functional and environmental hypoxia. Fish Physiol 27:255–299

    Article  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77(3):591–625

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to express their sincere gratitude to the Mississippi Agricultural and Forestry Experiment Station, United States Department of Agriculture (USDA) Agricultural Research Service (ARS), USDA National Institute of Food and Agriculture, and the United States Fish and Wildlife Service, for providing funding. We would also like to thank the Department of Wildlife, Fisheries and Aquaculture and M. Fondren and the staff of the South Farm Warmwater Aquaculture Research Facility at Mississippi State University for providing assistance and advice for the entire duration of this research project. Our appreciation also goes to Dr. Steve Mims at the aquaculture division of Kentucky State University for all their support throughout the experiment including providing fish and advice. We also thank Hammed A. Olanrewaju of the USDA Poultry Research Unit for helping with sample analysis. Furthermore, we would like to thank the anonymous reviewers of this manuscript for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Aboagye.

Additional information

Communicated by H. V. Carey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboagye, D.L., Allen, P.J. Effects of acute and chronic hypoxia on acid–base regulation, hematology, ion, and osmoregulation of juvenile American paddlefish. J Comp Physiol B 188, 77–88 (2018). https://doi.org/10.1007/s00360-017-1104-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-017-1104-7

Keywords

Navigation