Skip to main content
Log in

Metabolic responses to different immune challenges and varying resource availability in the side-blotched lizard (Uta stansburiana)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The energetic cost of immunity depends on many factors, including the type of challenge, the timing of the response, and the state of the animal. We measured changes in the standard metabolic rates of side-blotched lizards (Uta stansburiana Baird and Girard, 1852) in response to different immune challenges and nutritional states. In the first experiment, lizards were randomly assigned to one of four treatments: lipopolysaccharide (LPS) injection (to stimulate the response to a pathogen), cutaneous biopsy (as a proxy to a superficial wound), both injection and biopsy, or neither (control). Four and five days later, we measured the standard metabolic rates of the lizards. In response to healing a cutaneous wound, lizards reduced metabolic rate and lost body mass. Healing rate was also inversely related to weight loss, but LPS had no effect on body mass or metabolic rate. In the second experiment, a new set of lizards were randomly assigned to a high-food or low-food diet and administered a cutaneous biopsy. As in the first experiment, we observed a reduction in metabolic rate after wounding; moreover, this decrease was positively correlated with the rate of healing. We observed higher rates of metabolism in lizards that ate more food, but food consumption was unrelated to the decrease in metabolic rate following the biopsy. These experiments demonstrate the dynamic nature of the immune response in response to immune challenge and the state of the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed A, Baggott S, Maingon R, Hurd H (2002) The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 97(3):371–377

    Article  Google Scholar 

  • Ahtiainen J, Alatalo R, Kortet R, Rantala M (2005) A trade-off between sexual signalling and immune function in a natural population of the drumming wolf spider Hygrolycosa rubrofasciata. J Evol Biol 18(4):985–991

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Alvarez C, Tella JL (2001) Effects of experimental food restriction and body-mass changes on the avian T-cell-mediated immune response. Can J Zool 79(1):101–105

    Article  Google Scholar 

  • Andrén C, Nilson G (1983) Reproductive tactics in an island population of adders, Vipera berus (L.), with a fluctuating food resource. Amphib Reptil 4(1):63–79

    Article  Google Scholar 

  • Ardia DR, Parmentier HK, Vogel LA (2011) The role of constraints and limitation in driving individual variation in immune response. Funct Ecol 25(1):61–73

    Article  Google Scholar 

  • Barr DP, Cecil RL, Du Bois EF (1922) Clinical calorimetry XXXII: temperature regulation after the intravenous injection of proteose and typhoid vaccine. Arch Intern Med 29(5):608–634

    Article  CAS  Google Scholar 

  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601

    Article  PubMed  Google Scholar 

  • Bernheim HA, Kluger MJ (1976) Fever and antipyresis in the lizard Dipsosaurus dorsalis. Am J Physiol Leg Content 231(1):198–203

    CAS  Google Scholar 

  • Cooper A, Fitzgeorge R, Baskerville A, Little R, Rothwell N (1989) Bacterial infection (Legionella pneumophila) stimulates fever, metabolic rate and brown adipose tissue activity in the Guinea pig. Life Sci 45(9):843–847

    Article  CAS  PubMed  Google Scholar 

  • Cox CL, Peaden RT, Cox RM (2015) The metabolic cost of mounting an immune response in male brown anoles (Anolis sagrei). J Exp Zool Part A 323:689–695

    Article  CAS  Google Scholar 

  • Deen CM, Hutchison VH (2001) Effects of lipopolysaccharide and acclimation temperature on induced behavioral fever in juvenile Iguana iguana. J Therm Biol 26(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Demas GE, Chefer V, Talan MI, Nelson RJ (1997) Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6 J mice. Am J Physiol Regul Integr Comp Physiol 273(5):R1631–R1637

    CAS  Google Scholar 

  • Demas GE, Zysling DA, Beechler BR, Muehlenbein MP, French SS (2011) Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J Anim Ecol 80(4):710–730

    Article  PubMed  Google Scholar 

  • Demas G, Greives T, Chester E, French S (2012) The energetics of immunity. In: Demas GE, Nelson RJ (eds) Ecoimmunology. Oxford University Press, Oxford, pp 259–296

  • Derting TL, Virk MK (2005) Positive effects of testosterone and immunochallenge on energy allocation to reproductive organs. J Comp Physiol B 175(8):543–556

    Article  CAS  PubMed  Google Scholar 

  • do Amaral JPS, Marvin GA, Hutchison VH (2002) The influence of bacterial lipopolysaccharide on the thermoregulation of the box turtle Terrapene carolina. Physiol Biochem Zool 75(3):273–282

    Article  PubMed  Google Scholar 

  • Fargallo JA, Laaksonen T, Pöyri V, Korpimäki E (2002) Inter-sexual differences in the immune response of Eurasian kestrel nestlings under food shortage. Ecol Lett 5(1):95–101

    Article  Google Scholar 

  • French SS, Neuman-Lee LA (2012) Improved ex vivo method for microbiocidal activity across vertebrate species. Biol Open 1(5):482–487

    Article  PubMed Central  PubMed  Google Scholar 

  • French SS, Matt KS, Moore MC (2006) The effects of stress on wound healing in male tree lizards (Urosaurus ornatus). Gen Comp Endocr 145(2):128–132

    Article  CAS  PubMed  Google Scholar 

  • French SS, Johnston G, Moore M (2007a) Immune activity suppresses reproduction in food in food-limited female tree lizards Urosaurus ornatus. Funct Ecol 21(6):1115–1122

    Article  Google Scholar 

  • French SS, DeNardo DF, Moore MC (2007b) Trade-offs between the reproductive and immune systems: facultative responses to resources or obligate responses to reproduction? Am Nat 170(1):79–89

    PubMed  Google Scholar 

  • Huey RB, Pianka ER (1981) Ecological consequences of foraging mode. Ecology 62:991–999

    Article  Google Scholar 

  • Jacot A, Scheuber H, Brinkhof MW, Shaw K (2004) Costs of an induced immune response on sexual display and longevity in field crickets. Evol Int J Org Evol 58(10):2280–2286

    Article  Google Scholar 

  • Johnson R (2002) The concept of sickness behavior: a brief chronological account of four key discoveries. Vet Immunol Immunopathol 87(3):443–450

    Article  CAS  PubMed  Google Scholar 

  • Klasing KC, Laurin DE, Peng RK, Fry DM (1987) Immunologically mediated growth depression in chicks: influence of feed intake, corticosterone and interleukin-1. J Nutr 117:1629–1637

    CAS  PubMed  Google Scholar 

  • Kluger MJ, Ringler DH, Anver MR (1975) Fever and survival. Science 188(4184):166–168

    Article  CAS  PubMed  Google Scholar 

  • Kolbe JJ, Ehrenberger JC, Moniz HA, Angilletta MJ Jr (2014) Physiological variation among invasive populations of the brown anole (Anolis sagrei)*. Physiol Biochem Zool 87(1):92–104

    Article  PubMed  Google Scholar 

  • Kristan DM, Hammond KA (2001) Parasite infection and caloric restriction induce physiological and morphological plasticity. Am J Physiol Regul Integr Comp Physiol 281(2):R502–R510

    CAS  PubMed  Google Scholar 

  • Laburn H, Mitchell D, Kenedi E, Louw G (1981) Pyrogens fail to produce fever in a cordylid lizard. Am J Physiol Regul Integr Comp Physiol 241(3):R198–R202

    CAS  Google Scholar 

  • Lefcort H, Eiger SM (1993) Antipredatory behaviour of feverish tadpoles: implications for pathogen transmission. Behaviour 126(1):13–27

    Article  Google Scholar 

  • Liang Q-J, Lei Z, Qian C, Zheng W-H (2015) Effect of food restriction on the energy metabolism of the Chinese bulbul (Pycnonotus sinensis). (Zool Res) 36 (2):79–87

    PubMed Central  PubMed  Google Scholar 

  • Llewellyn D, Brown G, Thompson M, Shine R (2011) Behavioral responses to immune-system activation in an anuran (the cane toad, Bufo marinus): field and laboratory studies. Physiol Biochem Zool 84(1):77–86

    Article  CAS  PubMed  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88(1):87–98

    Article  Google Scholar 

  • López P, Gabirot M, Martín J (2009) Immune challenge affects sexual coloration of male Iberian wall lizards. J Exp Zool Part A Ecol Genet Physiol 311(2):96–104

    Article  Google Scholar 

  • Magnanou E, Fons R, Feliu C, Morand S (2006) Physiological responses of insular wild black rat (Rattus rattus) to natural infection by the digenean trematode Fasciola hepatica. Parasitol Res 99(1):97–101

    Article  CAS  PubMed  Google Scholar 

  • Malvin MD, Kluger MJ (1979) Oxygen uptake in green iguana (Iguana iguana) injected with bacteria. J Thermal Biol 4(2):147–148

    Article  Google Scholar 

  • Martin LB II, Scheuerlein A, Wikelski M (2003) Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs? Proc R Soc Lond Ser B Biol Sci 270(1511):153–158

    Article  Google Scholar 

  • Matson KD, Ricklefs RE, Klasing KC (2005) A hemolysis–hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev Comp Immunol 29(3):275–286

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway J, Charles A (2000) Innate immunity. N Engl J Med 343:338–344

    Article  CAS  PubMed  Google Scholar 

  • Merchant M, Fleury L, Rutherford R, Paulissen M (2008) Effects of bacterial lipopolysaccharide on thermoregulation in green anole lizards (Anolis carolinensis). Vet Immunol Immunopathol 125(1):176–181

    Article  CAS  PubMed  Google Scholar 

  • Mills SC, Grapputo A, Jokinen I, Koskela E, Mappes T, Poikonen T (2010) Fitness trade-offs mediated by immunosuppression costs in a small mammal. Evol Int J Org Evol 64(1):166–179

    Article  Google Scholar 

  • Monagas W, Gatten R (1983) Behavioural fever in the turtles Terrapene carolina and Chrysemys picta. J Therm Biol 8(3):285–288

    Article  Google Scholar 

  • Moore MC (1986) Elevated testosterone levels during nonbreeding-season territoriality in a fall-breeding lizard, Sceloporus jarrovi. J Comp Physiol A 158(2):159–163

    Article  CAS  PubMed  Google Scholar 

  • Murray M, Murray A (1979) Anorexia of infection as a mechanism of host defense. Am J Clin Nutr 32(3):593–596

    CAS  PubMed  Google Scholar 

  • Neuman-Lee LA, French SS (2014) Wound healing reduces stress-induced immune changes: evidence for immune prioritization in the side-blotched lizard. J Comp Physiol B 184(5):623–629

    Article  CAS  PubMed  Google Scholar 

  • Neuman-Lee LA, Bobby Fokidis H, Spence AR, Van der Walt M, Smith GD, Durham S, French SS (2015) Food restriction and chronic stress alter energy use and affect immunity in an infrequent feeder. Funct Ecol 29(11):1453–1462

    Article  Google Scholar 

  • Norris K, Evans MR (2000) Ecological immunology: life history trade-offs and immune defense in birds. Behav Ecol 11(1):19–26

    Article  Google Scholar 

  • Nowell PC (1960) Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res 20(4):462–466

    CAS  PubMed  Google Scholar 

  • Oro D, Genovart M, Tavecchia G, Fowler MS, Martínez-Abraín A (2013) Ecological and evolutionary implications of food subsidies from humans. Ecol Lett 16(12):1501–1514

    Article  PubMed  Google Scholar 

  • Ots I, Kerimov AB, Ivankina EV, Ilyina TA, Hõrak P (2001) Immune challenge affects basal metabolic activity in wintering great tits. Proc R Soc Lond B Biol Sci 268(1472):1175–1181

    Article  CAS  Google Scholar 

  • Padgett DA, Glaser R (2003) How stress influences the immune response. Trends Immunol 24:444–448

    Article  CAS  PubMed  Google Scholar 

  • Råberg L, Nilsson J, Ilmonen P, Stjernman M, Hasselquist D (2000) The cost of an immune response: vaccination reduces parental effort. Ecol Lett 3(5):382–386

    Article  Google Scholar 

  • Reznick D, Nunney L, Tessier A (2000) Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol Evol 15(10):421–425

    Article  CAS  PubMed  Google Scholar 

  • Roberts LA (1968) Oxygen consumption in the lizard Uta stansburiana. Ecology 49:809–819

    Article  Google Scholar 

  • Saino N, Calza S, Møller AP (1998) Effects of a dipteran ectoparasite on immune response and growth trade-offs in barn swallow, Hirundo rustica, nestlings. Oikos 81:217–228

  • Sanz JJ, Moreno J, Merino S, Tomás G (2004) A trade-off between two resource-demanding functions: post-nuptial moult and immunity during reproduction in male pied flycatchers. J Anim Ecol 73(3):441–447

    Article  Google Scholar 

  • Sherman E, Stephens A (1998) Fever and metabolic rate in the toad Bufo marinus. J Therm Biol 23(1):49–52

    Article  Google Scholar 

  • Soler JJ, de Neve L, Pérez–Contreras T, Soler M, Sorci G (2003) Trade-off between immunocompetence and growth in magpies: an experimental study. Proc R Soc Lond B Biol Sci 270(1512):241–248

    Article  Google Scholar 

  • Stebbins RC (2003) A field guide to western reptiles and amphibians. Peterson Field Guides, 3 edn. Houghton Mifflin Harcourt, Boston

  • Svensson E, Råberg L, Koch C, Hasselquist D (1998) Energetic stress, immunosuppression and the costs of an antibody response. Funct Ecol 12(6):912–919

    Article  Google Scholar 

  • Uller T, Isaksson C, Olsson M (2006) Immune challenge reduces reproductive output and growth in a lizard. Funct Ecol 20(5):873–879

    Article  Google Scholar 

  • Viney ME, Riley EM, Buchanan KL (2005) Optimal immune responses: immunocompetence revisited. Trends Ecol Evol 20(12):665–669

    Article  PubMed  Google Scholar 

  • Waldschmidt S, Tracy CR (1983) Interactions between a lizard and its thermal environment: implications for sprint performance and space utilization in the lizard Uta stansburiana. Ecology 64:476–484

    Article  Google Scholar 

  • Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870

    CAS  PubMed  Google Scholar 

  • White T (1978) The importance of a relative shortage of food in animal ecology. Oecologia 33(1):71–86

    Article  CAS  PubMed  Google Scholar 

  • Wobeser GA (2006) Essentials of disease in wild animals. Blackwell Publishing Ltd., Oxford, UK

    Google Scholar 

  • Zimmerman L, Vogel L, Bowden R (2010) Understanding the vertebrate immune system: insights from the reptilian perspective. J Exp Biol 213(5):661–671

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Moeller for laboratory assistance and P. Zani for help with the manuscript. S. Durham gave statistical and stylistic advice. We are also grateful for lizard-catching help from A. Berryman, A. Durso, D. Hunter, and M. Murphy.

Author contributions

GS and SF contributed to all aspects of this work. LN and AW contributed to performing experiments, assays, and manuscript revision. MA contributed to data analysis, manuscript revision, and provided technical expertise. DD contributed to experimental design, manuscript preparation, and provided technical expertise. These experiments were supported by the Utah State University Department of Biology and Ecology Center, as well as the National Science Foundation (IOS)-1350070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey D. Smith.

Ethics declarations

Conflict of interest

No one involved with these experiments have any competing interests.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, G.D., Neuman-Lee, L.A., Webb, A.C. et al. Metabolic responses to different immune challenges and varying resource availability in the side-blotched lizard (Uta stansburiana). J Comp Physiol B 187, 1173–1182 (2017). https://doi.org/10.1007/s00360-017-1095-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-017-1095-4

Keywords

Navigation