Journal of Comparative Physiology B

, Volume 187, Issue 5–6, pp 835–845 | Cite as

Central activation of the A1 adenosine receptor in fed mice recapitulates only some of the attributes of daily torpor

  • Maria A. Vicent
  • Ethan D. Borre
  • Steven J. Swoap
Original Paper

Abstract

Mice enter bouts of daily torpor, drastically reducing metabolic rate, core body temperature (T b), and heart rate (HR), in response to reduced caloric intake. Because central adenosine activation has been shown to induce a torpor-like state in the arctic ground squirrel, and blocking the adenosine-1 (A1) receptor prevents daily torpor, we hypothesized that central activation of the A1 adenosine receptors would induce a bout of natural torpor in mice. To test the hypothesis, mice were subjected to four different hypothermia bouts: natural torpor, forced hypothermia (FH), isoflurane-anesthesia, and an intracerebroventricular injection of the selective A1 receptor agonist N6-cyclohexyladenosine (CHA). All conditions induced profound hypothermia. T b fell more rapidly in the FH, isoflurane-anesthesia, and CHA conditions compared to torpor, while mice treated with CHA recovered at half the rate of torpid mice. FH, isoflurane-anesthesia, and CHA-treated mice exhibited a diminished drop in HR during entry into hypothermia as compared to torpor. Mice in all conditions except CHA shivered while recovering from hypothermia, and only FH mice shivered substantially while entering hypothermia. Circulating lactate during the hypothermic bouts was not significantly different between the CHA and torpor conditions, both of which had lower than baseline lactate levels. Arrhythmias were largely absent in the FH and isoflurane-anesthesia conditions, while skipped beats were observed in natural torpor and periodic extended (>1 s) HR pauses in the CHA condition. Lastly, the hypothermic bouts showed distinct patterns of gene expression, with torpor characterized by elevated hepatic and cardiac Txnip expression and all other hypothermic states characterized by elevated c-Fos and Egr-1 expression. We conclude that CHA-induced hypothermia and natural torpor are largely different physiological states.

Keywords

Torpor Hibernation Adenosine Hypothermia Targeted temperature management 

References

  1. Ahmad FU, Wang MY, Levi AD (2014) Hypothermia for acute spinal cord injury–a review. World Neurosurg 82(1–2):207–214CrossRefPubMedGoogle Scholar
  2. Anderson R, Sheehan MJ, Strong P (1994) Characterization of the adenosine receptors mediating hypothermia in the concious mouse. Br J Pharmacol 113(4):1386–1390CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bjorness TE, Greene RW (2009) Adenosine and sleep. Curr Neuropharmacol 7(3):238–245CrossRefPubMedPubMedCentralGoogle Scholar
  4. Borlongan CV, Hayashi T, Oeltgen PR, Su TP, Wang Y (2009) Hibernation-like state induced by an opioid peptide protects against experimental stroke. BMC Biol 7:31CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bouma HR, Verhaag EM, Otis JP, Heldmaier G, Swoap SJ, Strijkstra AM, Henning RH, Carey HV (2011) Induction of torpor: mimicking natural metabolic suppression for biomedical applications. J Cell Physiol 227(4):1285–1290CrossRefGoogle Scholar
  6. Braulke LJ, Heldmaier G (2010) Torpor and ultradian rhythms require an intact signalling of the sympathetic nervous system. Cryobiology 60(2):198–203CrossRefPubMedGoogle Scholar
  7. Bruns RF, Daly JW, Snyder SH (1983) Adenosine receptor binding: structure–activity analysis generates extremely potent xanthine antagonists. Proc Natl Acad Sci USA 80(7):2077–2080CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen G, van den Pol AN (1997) Adenosine modulation of calcium currents and presynaptic inhibition of GABA release in suprachiasmatic and arcuate nucleus neurons. J Neurophysiol 77(6):3035–3047PubMedGoogle Scholar
  9. Cheng Y, Tao Y-M, Sun J-F, Wang Y-H, Xu X-J, Chen J, Chi Z-Q, Liu J-G (2010) Adenosine A1 receptor agonist N6-cyclohexyl-adenosine induced phosphorylation of delta opioid receptor and desensitization of its signaling. Acta Pharmacol Sin 31(7):784–790CrossRefPubMedPubMedCentralGoogle Scholar
  10. Constantinides C, Mean R, Janssen BJ (2011) Effects of Isoflurane Anesthesia on the Cardiovascular Function of the C57BL/6 Mouse. ILAR J (National Research Council, Institute of Laboratory Animal Resources) 52:e21–e31Google Scholar
  11. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24(1):31–55CrossRefPubMedGoogle Scholar
  12. Fredholm BB, Johansson S, Wang Y-Q (2011) Adenosine and the Regulation of Metabolism and Body Temperature. In: Kenneth AJ, Joel L (eds) Advances in Pharmacology Academic Press. 61: 77–94Google Scholar
  13. Gavrilova O, Leon LR, Marcus-Samuels B, Mason MM, Castle AL, Refetoff S, Vinson C, Reitman ML (1999) Torpor in mice is induced by both leptin-dependent and-independent mechanisms. Proc Natl Acad Sci 96(25):14623–14628CrossRefPubMedPubMedCentralGoogle Scholar
  14. Geiser F, Currie SE, O’Shea KA, Hiebert SM (2014) Torpor and hypothermia: reversed hysteresis of metabolic rate and body temperature. Am J Physiol Regul Integr Comp Physiol 307(11):R1324–R1329CrossRefPubMedGoogle Scholar
  15. Gluck EF, Stephens N, Swoap SJ (2006) Peripheral ghrelin deepens torpor bouts in mice through the arcuate nucleus neuropeptide Y signaling pathway. Am J Physiol Regul Integr Comp Physiol 291(5):R1303–R1309CrossRefPubMedGoogle Scholar
  16. Gordon CJ (2001) The therapeutic potential of regulated hypothermia. Emerg Med J 18(2):81–89CrossRefPubMedPubMedCentralGoogle Scholar
  17. Group T H. a. C. A. S (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346(8):549–556CrossRefGoogle Scholar
  18. Hand LE, Saer BRC, Hui ST, Jinnah HA, Steinlechner S, Loudon ASI, Bechtold DA (2013) Induction of the metabolic regulator txnip in fasting-induced and natural torpor. Endocrinology 154(6):2081–2091CrossRefPubMedPubMedCentralGoogle Scholar
  19. Heller HC, Ruby NF (2004) Sleep and circadian rhythms in mammalian torpor. Annu Rev Physiol 66(1):275–289CrossRefPubMedGoogle Scholar
  20. Iliff BW, Swoap SJ (2012) Central adenosine receptor signaling is necessary for daily torpor in mice. Am J Physiol Regul Integr Comp Physiol 303(5):R477–R484CrossRefPubMedGoogle Scholar
  21. Jinka T, Carlson Z, Moore J, Drew K (2010) Altered thermoregulation via sensitization of A1 adenosine receptors in dietary-restricted rats. Psychopharmacology (Berl) 209(3):217–224CrossRefGoogle Scholar
  22. Jinka TR, Tøien Ø, Drew KL (2011) Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A1 receptors. J Neurosci 31(30):10752–10758CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jinka TR, Combs VM, Drew KL (2015) Translating drug-induced hibernation to therapeutic hypothermia. ACS Chemi Neurosci 6(6):899–904CrossRefGoogle Scholar
  24. Lyman CP, O’Brien RC (1963) Autonomic control of circulation during hibernating cycle in ground squirrels. J Physiol Lond 168(3):477–499CrossRefPubMedPubMedCentralGoogle Scholar
  25. Maher RL, Barbash SM, Lynch DV, Swoap SJ (2015) Group housing and nest building only slightly ameliorate the cold stress of typical housing in female C57BL/6J mice. Am J Physiol Regul Integr Comp Physiol 308(12):R1070–R1079CrossRefPubMedGoogle Scholar
  26. Mertens A, Stiedl O, Steinlechner S, Meyer M (2008) Cardiac dynamics during daily torpor in the Djungarian hamster (Phodopus sungorus). Am J Physiol Regul Integr Comp Physiol 294(2):R639–R650CrossRefPubMedGoogle Scholar
  27. Miller LP, Hsu C (1992) Therapeutic potential for adenosine receptor activation in ischemic brain injury. J Neurotrauma 9(2):S563–S577PubMedGoogle Scholar
  28. Milsom WK, Zimmer MB, Harris MB (1999) Regulation of cardiac rhythm in hibernating mammals. Comp Biochem Physiol Part A Mol Integr Physiol 124(4):383–391CrossRefGoogle Scholar
  29. Minor RK, Chang JW, De Cabo R (2009) Hungry for life: how the arcuate nucleus and neuropeptide Y may play a critical role in mediating the benefits of calorie restriction. Mol Cell Endocrinol 299(1):79–88CrossRefPubMedGoogle Scholar
  30. Morhardt JE (1970) Heart rates, breathing rates and effects of atropine and acetylcholine on white-footed mice (Peromyscus Sp.) during daily torpor. Comp Biochem Physiol 33(2):441–457CrossRefPubMedGoogle Scholar
  31. Muzzi M, Blasi F, Masi A, Coppi E, Traini C, Felici R, Pittelli M, Cavone L, Pugliese AM, Moroni F, Chiarugi A (2013) Neurological basis of AMP-dependent thermoregulation and its relevance to central and peripheral hyperthermia. J Cereb Blood Flow Metab 33(2):183–190CrossRefPubMedGoogle Scholar
  32. Oelkrug R, Heldmaier G, Meyer C (2011) Torpor patterns, arousal rates, and temporal organization of torpor entry in wildtype and UCP1-ablated mice. J Comp Physiol B Biochemi Syst Environ Physiol 181(1):137–145CrossRefGoogle Scholar
  33. Olson JM, Jinka TR, Larson LK, Danielson JJ, Moore JT, Carpluck J, Drew KL (2013) Circannual rhythm in body temperature, torpor, and sensitivity to A1 adenosine receptor agonist in arctic ground squirrels. J Biol Rhythms 28(3):201–207CrossRefPubMedPubMedCentralGoogle Scholar
  34. Pelz KM, Routman D, Driscoll JR, Kriegsfeld LJ, Dark J (2008) Monosodium glutamate-induced arcuate nucleus damage affects both natural torpor and 2DG-induced torpor-like hypothermia in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 294(1):R255–R265CrossRefPubMedGoogle Scholar
  35. Scirica BM (2013) Therapeutic hypothermia after cardiac arrest. Circulation 127(2):244–250CrossRefPubMedGoogle Scholar
  36. Swoap SJ, Gutilla MJ (2009) Cardiovascular changes during daily torpor in the laboratory mouse. Am J Physiol Regul Integr Comp Physiol 297(3):R769–R774CrossRefPubMedPubMedCentralGoogle Scholar
  37. Swoap SJ, Weinshenker D (2008) Norepinephrine controls both torpor initiation and emergence via distinct mechanisms in the mouse. PLoS One 3(12):e4038CrossRefPubMedPubMedCentralGoogle Scholar
  38. Swoap SJ, Gutilla MJ, Liles LC, Smith RO, Weinshenker D (2006) The full expression of fasting-induced torpor requires {beta}3-adrenergic receptor signaling. J Neurosci 26(1):241–245CrossRefPubMedGoogle Scholar
  39. Swoap SJ, Rathvon M, Gutilla M (2007) AMP does not induce torpor. Am J Physiol Regul Integr Comp Physiol 293(1):R468–R473CrossRefPubMedGoogle Scholar
  40. Swoap SJ, Iliff BW, Le S (2012) Adenosine, AMP, and daily torpor. Springer, HeidelbergCrossRefGoogle Scholar
  41. Tamura Y, Shintani M, Nakamura A, Monden M, Shiomi H (2005) Phase-specific central regulatory systems of hibernation in Syrian hamsters. Brain Res 1045(1–2):88–96CrossRefPubMedGoogle Scholar
  42. Tupone D, Madden CJ, Morrison SF (2013) Central activation of the A1 adenosine receptor (A1AR) induces a hypothermic, torpor-like state in the rat. J Neurosci 33(36):14512–14525CrossRefPubMedPubMedCentralGoogle Scholar
  43. Walker J, Glotzbach S, Berger R, Heller H (1977) Sleep and hibernation in ground squirrels (Citellus spp): electrophysiological observations. Am J Physiol Regul Integr Comp Physiol 233(5):R213–R221Google Scholar
  44. Yang JN, Tiselius C, Daré E, Johansson B, Valen G, Fredholm BB (2007) Sex differences in mouse heart rate and body temperature and in their regulation by adenosine A1 receptors. Acta Physiol 190(1):63–75CrossRefGoogle Scholar
  45. Yenari MA, Han HS (2012) Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci 13(4):267–278PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Maria A. Vicent
    • 1
  • Ethan D. Borre
    • 1
  • Steven J. Swoap
    • 1
  1. 1.Department of BiologyWilliams CollegeWilliamstownUSA

Personalised recommendations