Journal of Comparative Physiology B

, Volume 187, Issue 2, pp 353–360 | Cite as

Expression of VEGF 111 and other VEGF-A variants in the rat uterus is correlated with stage of pregnancy

  • Camilla M. WhittingtonEmail author
  • Kevin Danastas
  • Georges E. Grau
  • Christopher R. Murphy
  • Michael B. Thompson
Original Paper


Vascular endothelial growth factor A is a major mediator of angiogenesis, a critically important process in vertebrate growth and development as well as pregnancy. Here we report for the first time the expression of a rare and unusually potent splice variant, VEGF 111 , in vivo in mammals. This variant has previously only been found in mammals in cultured human cells exposed to genotoxic agents. Our discovery of VEGF 111 in the uterus of both a eutherian (rat) and a marsupial (fat-tailed dunnart) suggests that the splice variant may be common to all mammals. As VEGF 111 is also expressed in the uterus of at least one lineage of lizards, the expression of this splice variant may be a widespread amniote phenomenon. We measured expression of VEGF 111 and two major VEGF-A splice variants in the uterus of pregnant rats, showing that the three variants show different expression patterns across pregnancy. Our results suggest that viviparous mammals possess a precisely regulated milieu of VEGF isoforms producing the angiogenesis required for successful pregnancy. The discovery of VEGF 111 in rat uterus paves the way for the development of in vivo models of VEGF 111 activity in a highly tractable laboratory animal, and is particularly significant in the context of early pregnancy loss and cancer research.


Angiogenesis Implantation Pregnancy Uterus Vascular endothelial growth factor Viviparity 



We thank L. Lindsay, C. Poon, R. Madawala and V. Nguyen for assistance with rat vaginal smearing, B. McAllan for generously providing dunnart tissues, and M. Laird for assisting with their collection. We are grateful to CR Friesen and JU Van Dyke for statistical advice and M. Olsson for sharing his molecular laboratory space and equipment. RNA integrity analysis was carried out in the Bosch Molecular Biology Facility at the University of Sydney.

Compliance with ethical standards

Funding sources

This study was funded by Australian Research Council Grant DP120100649 to MBT, CRM, and GEG, and a University of Sydney Animal and Veterinary Biosciences Research Fellowship to CMW. The funding sources had no involvement in study design, collection, analysis and interpretation of data, the writing of the manuscript, or the decision to submit the manuscript for publication.

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

360_2016_1040_MOESM1_ESM.docx (4.7 mb)
Supplementary material 1 (PDF 4842 kb)


  1. Abrahamsohn PA, Zorn TM (1993) Implantation and decidualization in rodents. J Exp Zool 266:603–628. doi: 10.1002/jez.1402660610 CrossRefPubMedGoogle Scholar
  2. Ancelin M, Buteau-Lozano H, Meduri G, Osborne-Pellegrin M, Sordello S, Plouet J, Perrot-Applanat M (2002) A dynamic shift of VEGF isoforms with a transient and selective progesterone-induced expression of VEGF(189) regulates angiogenesis and vascular permeability in human uterus. Proc Natl Acad Sci USA 99:6023–6028. doi: 10.1073/pnas.082110999 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Burchardt M, Burchardt T, Chen M-W, Shabsigh A, de la Taille A, Buttyan R, Shabsigh R (1999) Expression of messenger ribonucleic acid splice variants for vascular endothelial growth factor in the penis of adult rats and humans. Biol Reprod 60:398–404. doi: 10.1095/biolreprod60.2.398 CrossRefPubMedGoogle Scholar
  4. Chakraborty I, Das SK, Dey SK (1995) Differential expression of vascular endothelial growth factor and its receptor mRNAs in the mouse uterus around the time of implantation. J Endocrinol 147:339–352. doi: 10.1677/joe.0.1470339 CrossRefPubMedGoogle Scholar
  5. Charnock-Jones DS et al (1993) Identification and localization of alternately spliced mRNAs for vascular endothelial growth factor in human uterus and estrogen regulation in endometrial carcinoma cell lines. Biol Reprod 48:1120–1128. doi: 10.1095/biolreprod48.5.1120 CrossRefPubMedGoogle Scholar
  6. Cullinan-Bove K, Koos RD (1993) Vascular endothelial growth factor/vascular permeability factor expression in the rat uterus: rapid stimulation by estrogen correlates with estrogen-induced increases in uterine capillary permeability and growth. Endocrinology 133:829–837. doi: 10.1210/endo.133.2.8344219 PubMedGoogle Scholar
  7. Danastas K, Combes V, Lindsay LA, Grau GER, Thompson MB, Murphy CR (2015) VEGF111: new insights in tissue invasion. Front Physiol. doi: 10.3389/fphys.2015.00002 PubMedPubMedCentralGoogle Scholar
  8. Delcombel R et al (2013) New prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation. Angiogenesis 16:353–371. doi: 10.1007/s10456-012-9320-y CrossRefPubMedGoogle Scholar
  9. Enders AC, Schlafke S (1967) A morphological analysis of the early implantation stages in the rat American. J Anat 120:185–225CrossRefGoogle Scholar
  10. Griffith OW, Brandley MC, Whittington CM, Belov K, Thompson MB (2016) Comparative genomics of hormonal signaling in the chorioallantoic membrane of oviparous and viviparous amniotes. Gen Comp Endocrinol. doi: 10.1016/j.ygcen.2016.04.017 Google Scholar
  11. Halder JB, Zhao X, Soker S, Paria BC, Klagsbrun M, Das SK, Dey SK (2000) Differential expression of VEGF isoforms and VEGF164-specific receptor neuropilin-1 in the mouse uterus suggests a role for VEGF164 in vascular permeability and angiogenesis during implantation. Genesis 26:213–224. doi: 10.1002/(SICI)1526-968X(200003)26:3<213:AID-GENE7>3.0.CO;2-M CrossRefPubMedGoogle Scholar
  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  13. Hyder SM, Stancel GM (1999) Regulation of angiogenic growth factors in the female reproductive tract by estrogens and progestins. Mol Endocrinol 13:806–811. doi: 10.1210/mend.13.6.0308 CrossRefPubMedGoogle Scholar
  14. Labied S et al (2013) Isoform 111 of vascular endothelial growth factor (VEGF111) improves angiogenesis of ovarian tissue xenotransplantation. Transplantation 95:426–433. doi: 10.1097/TP.0b013e318279965c CrossRefPubMedGoogle Scholar
  15. Mineur P et al (2007) Newly identified biologically active and proteolysis-resistant VEGF-A isoform VEGF111 is induced by genotoxic agents. J Cell Biol 179:1261–1273. doi: 10.1083/jcb.200703052 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mineur P, Delgaudine M, Deroanne C, Dubail J, Nusgens B, Colige A, Lambert C (2009) VEGF111, a novel VEGF-A splice variant induced by genotoxic agents: Dr. JEKYLL & Mr HYDE? Wound Repair Regen 17:A73Google Scholar
  17. Murphy BF, Belov K, Thompson MB (2010) Evolution of viviparity and uterine angiogenesis: vascular endothelial growth factor (VEGF) in oviparous and viviparous skinks. J Exp Zool B 314B:148–156. doi: 10.1002/jez.b.21317 Google Scholar
  18. Pfarrer CD, Ruziwa SD, Winther H, Callesen H, Leiser R, Schams D, Dantzer V (2006) Localization of vascular endothelial growth factor (VEGF) and its receptors VEGFR-1 and VEGFR-2 in bovine placentomes from implantation until term. Placenta 27:889–898. doi: 10.1016/j.placenta.2005.09.004 CrossRefPubMedGoogle Scholar
  19. Prats H, Touriol C (2016) Post-transcriptional regulation of VEGF-A. In: Menon KMJ, Goldstrohm AC (eds) Post-transcriptional mechanisms in endocrine regulation. Springer International Publishing, Berlin, pp 157–180. doi: 10.1007/978-3-319-25124-0_8 CrossRefGoogle Scholar
  20. Psychoyos A (1973) Endocrine control of egg implantation. In: RO Greep EGASRG (ed) Handbook of physiology. American Physiological Society, Washington, pp 187–215Google Scholar
  21. Reynolds LP et al (2006) Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol 572:51–58CrossRefPubMedPubMedCentralGoogle Scholar
  22. Roberts CT, Breed WG (1994) Embryonic-maternal cell interactions at implantation in the fat-tailed dunnart, a dasyurid marsupial. Anat Record 240:59–76. doi: 10.1002/ar.1092400107 CrossRefGoogle Scholar
  23. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz SMS (ed) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  24. Sharkey AM, Charnock-Jones DS, Boocock CA, Brown KD, Smith SK (1993) Expression of mRNA for vascular endothelial growth factor in human placenta. J Reprod Fertil 99:609–615. doi: 10.1530/jrf.0.0990609 CrossRefPubMedGoogle Scholar
  25. Shweiki D, Itin A, Neufeld G, Gitay-Goren H, Keshet E (1993) Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis J. Clin Investig 91:2235–2243CrossRefGoogle Scholar
  26. Sugino N, Kashida S, Karube-Harada A, Takiguchi S, Kato H (2002) Expression of vascular endothelial growth factor (VEGF) and its receptors in human endometrium throughout the menstrual cycle and in early pregnancy. Reproduction 123:379–387. doi: 10.1530/rep.0.1230379 CrossRefPubMedGoogle Scholar
  27. Vempati P, Popel AS, Mac Gabhann F (2014) Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev 25:1–19. doi: 10.1016/j.cytogfr.2013.11.002 CrossRefPubMedGoogle Scholar
  28. Vuorela P et al (1997) Expression of vascular endothelial growth factor and placenta growth factor in human placenta. Biol Reprod 56:489–494. doi: 10.1095/biolreprod56.2.489 CrossRefPubMedGoogle Scholar
  29. Walter LM, Rogers PA, Girling JE (2010) Differential expression of vascular endothelial growth factor-A isoforms in the mouse uterus during early pregnancy. Reprod Biomed Online 21:803–811. doi: 10.1016/j.rbmo.2010.07.005 CrossRefPubMedGoogle Scholar
  30. Whittington CM, Grau GE, Murphy CR, Thompson MB (2015a) Unusual angiogenic factor plays a role in lizard pregnancy but is not unique to viviparity. J Exp Zool B 324:152–158. doi: 10.1002/jez.b.22615 CrossRefGoogle Scholar
  31. Whittington CM, Griffith OW, Qi W, Thompson MB, Wilson AB (2015b) Seahorse brood pouch transcriptome reveals common genes associated with vertebrate pregnancy. Mol Biol Evol 32:3114–3131. doi: 10.1093/molbev/msv177 PubMedGoogle Scholar
  32. Zygmunt M, Herr F, Münstedt K, Lang U, Liang OD (2003) Angiogenesis and vasculogenesis in pregnancy. Eur J Obstet Gynecol Reprod Biol 110(Supplement):S10–S18. doi: 10.1016/S0301-2115(03)00168-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Camilla M. Whittington
    • 1
    Email author
  • Kevin Danastas
    • 2
  • Georges E. Grau
    • 2
  • Christopher R. Murphy
    • 2
  • Michael B. Thompson
    • 1
  1. 1.School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
  2. 2.School of Medical Sciences, Bosch InstituteUniversity of SydneySydneyAustralia

Personalised recommendations