Skip to main content
Log in

The pathophysiology of survival in harsh environments

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

An individual’s ability to survive harsh conditions might depend on its available energy, and also on its health, which is expected to decline as conditions deteriorate. Yet, we know little about how health and energy expenditure are shaped by harsh environmental conditions in free-living vertebrates. Here, we studied how African striped mice (Rhabdomys pumilio) that survived summer droughts differed in their energy expenditure and health from non-survivors. Specifically, we tested whether: (1) survivors’ and non-survivors’ health and energy expenditure differed before environmental conditions declined; (2) non-survivors were in poorer health and had greater energy expenditure than survivors when conditions were harshest; (3) non-survivors’ health deteriorated more than that of survivors as conditions deteriorated; and (4) survivors recovered once conditions improved. Survivors and non-survivors’ health was assessed using VetsScan ABAXIS, while energy expenditure was measured as resting metabolic rate (RMR). Before conditions declined, non-survivors had lower energy stores and higher globulin levels than survivors. As conditions became harsher, survivors’ and non-survivors’ health deteriorated but only non-survivors showed signs of permanent pathology (increased glucose and decreased globulin). Once conditions improved, survivors’ health improved but was not fully restored (increased alanine aminotransferase and decreased globulin). Furthermore, while survivors and non-survivors had similar RMR before conditions became harsh; their levels diverged considerably when conditions deteriorated, with survivors having a decreased RMR and non-survivors having an increased RMR. Our results show that an individual’s health before facing an environmental challenge and the way it regulates its RMR influences its ability to maintain homeostasis when conditions become more taxing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arch JR, Hislop D, Wang SJ, Speakman JR (2006) Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals. Int J Obes 30:1322–1331

    Article  CAS  Google Scholar 

  • Artacho P, Soto-Gamboa M, Verdugo C, Nespolo RF (2007) Blood biochemistry reveals malnutrition in black-necked swans (Cygnus melanocoryphus) living in a conservation priority area. Comp Biochem Physiol A 146:283–290

    Article  Google Scholar 

  • Awerman JL, Romero LM (2010) Chronic psychological stress alters body weight and blood chemistry in European starlings (Sturnus vulgaris). Comp Biochem Physiol A 156:136–142

    Article  CAS  Google Scholar 

  • Barnes TS, Goldizen AW, Coleman GT (2008) Hematology and serum biochemistry of the brush-tailed rock-wallaby (Petrogale penicillata). J Wildl Dis 44:295–303

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Mächler M, Bolker BM, Walker SC (2014) Fitting linear mixed-effects models using lme4. http://CRAN.R-project.org/package=lme4

  • Bohus B, Koolhaas JM (1990) Psychoimmunology of social factors in rodents and other subprimate vertebrates. In: Ader R, Felten DL, Cohen N (eds) Psychoneuroimmunology. Academic Press, New York, pp 807–830

    Google Scholar 

  • Bossart GD, Reiderson TH, Dierauf LA, Duffield DA (2001) Clinical pathology. In: Dierauf LA, Gulland FM (eds) The CRC handbook of marine mammal medicine, 2nd edn. CRC Press, Boca Raton, pp 383–430

    Chapter  Google Scholar 

  • Brunner LS (2009) Brunner and Suddarth’s handbook of laboratory and diagnostic tests. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Caloin M (2004) Modeling of lipid and protein depletion during total starvation. Am J Physiol 287:E790–E798

    Article  CAS  Google Scholar 

  • Carey C (2009) The impacts of climate change on the annual cycles of birds. Philos Trans R Soc Lond B Biol Sci 27:3321–3330

    Article  Google Scholar 

  • Cartana J, Huget J, Arola L, Alemany M (1989) Effects of a high lipidic diet on murine energetic reserves in food deprivation. Hor Met Res 21:606–611

    Article  CAS  Google Scholar 

  • Casas-Diaz E, Lopez-Olvera JR, Marco I, Mentaberre G, Lavin S (2008) Hematologic and biochemical values for Spanish ibex (Capra pyrenaica) captured via drive-net and box-trap. J Wildl Dis 44:965–972

    Article  PubMed  Google Scholar 

  • Cherel Y, Robin J, Le Maho Y (1988) Physiology and biochemistry of long-term fasting in birds. Can J Zool 66:159–166

    Article  CAS  Google Scholar 

  • Christopher MM, Berry KB, Wallis IR, Nagy KA, Henen BT, Peterson CC (1999) Reference intervals and physiologic alterations in hematologic and biochemical values of free-ranging desert tortoises in the Mojave Desert. J Wildl Dis 35:212–238

    Article  CAS  PubMed  Google Scholar 

  • Clarke A, Rothery P, Isaac NJ (2010) Scaling of basal metabolic rate with body mass and temperature in mammals. J Anim Ecol 79:610–619

    Article  PubMed  Google Scholar 

  • Crawley MJ (2007) The R Book. Wiley, Chichester

    Book  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Climate Change 2:45–65

    Article  Google Scholar 

  • Deem SL, Norton TM, Mitchell M, Segars A, Alleman AR, Cray C, Poppenga RH, Dodd M, Karesh WB (2009) Comparison of blood values in foraging, nesting, and stranded loggerhead turtles (Caretta caretta) along the coast of Georgia, USA. J Wildl Dis 45:41–56

    Article  CAS  PubMed  Google Scholar 

  • DelGiudice GD, Mech LD, Kunkele EKE, Gese M, Seal US (1992) Seasonal patterns of weight, hematology, and serum characteristics of free-ranging female white-tailed deer in Minnesota. Can J Zool 70:974–983

    Article  Google Scholar 

  • Dutton CJ, Allchurch AF, Cooper JE (2002) Comparison of hematologic and biochemical reference ranges between captive populations of northern bald ibises (Geronticus eremita). J Wildl Dis 38:583–588

    Article  CAS  PubMed  Google Scholar 

  • Evans GO (2005) Animal clinical chemistry: a primer for toxicologists. Taylor & Francis Publishers, London

    Google Scholar 

  • Ferrer M (1993) Blood chemistry studies in birds: some applications to ecological problems. T Comp Biochem Physiol 1:1031–1044

    Google Scholar 

  • Firmansyah A, Suwandito L, Penn D, Lebenthal E (1989) Biochemical and morphological changes in the digestive tract of rats after prenatal and postnatal malnutrition. Am J Clinic Nutr 50:261–268

    CAS  Google Scholar 

  • Fischbach FT (2003) A manual of laboratory and diagnostic tests, 7th edn. Lippincott Williams & Wilkins Publishers, Philadelphia

    Google Scholar 

  • Golden MHN (1998) Oedematous malnutrition. Br Med Bull 54:433–444

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez FHD, Carvalho V, Möller V, Duarte FR (2003) Blood biochemical profile in dogs and cats under different feeding diets. Arch Vet Sci 8:23–27

    Article  Google Scholar 

  • Heimann M, Kasermann HP, Pfister R, Roth DR, Burki K (2009) Blood collection from the sublingual vein in mice and hamsters: a suitable alternative to retrobulbar technique that provides large volumes and minimizes tissue damage. Lab Anim 43:255–260

    Article  CAS  PubMed  Google Scholar 

  • Hervant F, Renault D (2002) Long-term fasting and realimentation in hypogean and epigean isopods: a proposed adaptive strategy for groundwater organisms. J Exper Biol 205:2079–2087

    CAS  Google Scholar 

  • Hissa R, Siekkinen J, Hohtola E, Saarela S, Hakala A, Pudas J (1994) Seasonal patterns in the physiology of the European brown bear (Ursus arctos arctos) in Finland. Comp Biochem Physiol A 109:781–791

    Article  CAS  Google Scholar 

  • Hochleithner M (1994) Biochemistries. In: Ritchie BW, Harrison GJ, Harrison LR (eds) Avian medicine: principles and application. Wingers Publ, Lake Worth, pp 223–245

    Google Scholar 

  • Hopkins T (2005) Lab notes: guide to lab & diagnostic tests. F. A. Davis Company, USA

    Google Scholar 

  • Illius A (2006) Linking functional responses and foraging behavior to population dynamics. In: Danell K, Bergström R, Duncan P, Pastor J (eds) Large herbivore ecology, ecosystem dynamics and conservation. Cambridge University Press, Cambridge, pp 71–96

    Chapter  Google Scholar 

  • Jessop TS, Woodford R, Symonds MRE (2013) Macrostress: do large-scale ecological patterns exist in the glucocorticoid stress response of vertebrates? Func Ecol 27:120–130

    Article  Google Scholar 

  • Kerr MG (1989) Veterinary laboratory medicine, clinical biochemistry and haematology. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Kerr GR, Waisman HA, Allen JA, Wallace J, Scheffler G (1973) Malnutrition studies in Macaca mulatta. II. The effect on organ size and skeletal growth. Am J Clinic Nutr 26:620–630

    CAS  Google Scholar 

  • Kooijman SALM (2010) Dynamic energy budget theory for metabolic organization. Cambridge University Press, Cambridge

    Google Scholar 

  • Koolhaas JM, Korte SM, De Boer SF, Van Der Vegt BJ, Van Reenen CG, Hopster H, De Jong IC, Ruis MA, Blokhuis HJ (1999) Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev 23:925–935

    Article  CAS  PubMed  Google Scholar 

  • Koolhaas JM, Bartolomucci A, Buwalda B, de Boer SF, Flügge G, Korte SM, Meerlo P, Murison R, Olivier B, Palanza P, Richter-Levine G, Sgoifok A, Steimerj T, Stiedlf O, van Dijkh G, Wöhrd M, Fuchs E (2011) Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev 35:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Kopec DA, Harvey JT (1995) Toxic pollutants, health indices, and population dynamics of harbor seals in San Francisco Bay, 1989–1992. Moss Landing Marine Laboratories Technical Publication, vol 96-4, p 138

  • Levendood JM, Sanderson GC, Anderson WL, Foley GL, Brown PW, Seets JW (2000) Influence of diet on the hematology and serum biochemistry of zinc-intoxicated mallards. J Wildl Dis 36:111–123

    Article  Google Scholar 

  • Lumeij JT (1997) Avian clinical biochemistry. In: Kaneko JJ, Harvey JW, Bruss ML (eds) Clinical biochemistry of domestic animals, 5th edn. Academic Press, London, pp 857–883

    Chapter  Google Scholar 

  • Marchal J, Dorieux O, Haro L, Aujard F, Perret M (2012) Characterization of blood biochemical markers during aging in the Grey Mouse Lemur (Microcebus murinus): impact of gender and season. BMC Vet Res 8:211

    Article  PubMed  PubMed Central  Google Scholar 

  • McCue MD (2007) Snakes survive starvation by employing supply- and demand-side economic strategies. Zool 110:318–327

    Article  Google Scholar 

  • McCue MD (2010) Starvation physiology: reviewing the strategies animals use to survive a common challenge. Comp Biochem Physiol A 156:1–18

    Article  Google Scholar 

  • McCue MD (2012) Comparative physiology of fasting, starvation, and food limitation. Springer, New York

    Book  Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15

    Article  PubMed  Google Scholar 

  • McGarigal K, Cushman S, Stafford S (2000) Multivariate statistics for wildlife and ecology research. Springer, New York

    Book  Google Scholar 

  • Milani JF, Wilson H, Ziccardi M, LeFebvre R, Scott C (2012) Hematology, plasma chemistry, and bacteriology of wild Tundra Swans (Cygnus columbianus) in Alaska. J Wild Dis 48:212–215

    Article  CAS  Google Scholar 

  • Moe B, Stolevik E, Bech C (2005) Ducklings exhibit substantial energy-saving mechanisms as a response to short-term food shortage. Physiol Biochem Zool 78:90–104

    Article  PubMed  Google Scholar 

  • Mora RJF (1999) Malnutrition: organic and functional consequences. World J Surg 23:530–535

    Article  CAS  PubMed  Google Scholar 

  • Mustonen AM, Nieminen P, Puukka M, Asikainen J, Saarela S, Karonen SL, Kukkonen JVK, Hyvärinen H (2004) Physiological adaptations of the raccoon dog (Nyctereutes procyonoides) to seasonal fasting-fat and nitrogen metabolism and influence of continuous melatonin treatment. J Comp Physiol 174:1–12

    Article  CAS  Google Scholar 

  • Mustonen AM, Bowman J, Sadowski C, Nituch LA, Bruce L, Halonen T, Puukka K, Rouvinen-Watt K, Aho J, Nieminen P (2013) Physiological adaptations to prolonged fasting in the overwintering striped skunk (Mephitis mephitis). Comp Biochem Physiol A 166:555–563

    Article  CAS  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Met Ecol Evol 4:133–142

    Article  Google Scholar 

  • O’Connor KI, Taylor AC, Metcalfe NB (2000) The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon. J Fish Biol 57:41–51

    Article  Google Scholar 

  • Ots I, Murumagi A, Horak P (1998) Haematological health states indices of reproducing great tits: methodology and sources of natural variation. Func Ecol 12:700–707

    Article  Google Scholar 

  • Overpeck JT, Cole JE (2006) Abrupt change in earth’s climate system. Ann Rev Environ Res 31:1–31

    Article  Google Scholar 

  • Pagana KD, Pagana TJ, Pagana TN (2015) Mosby’s diagnostic and laboratory test reference, 12th edn. Elsevier Inc, New York

    Google Scholar 

  • Payne JM, Payne S (1987) The metabolic profile test. Oxford University Press, New York, p 179

    Google Scholar 

  • Raab A, Dantzer R, Michaud B, Mormede P, Taghzouti K, Simon H (1986) Behavioral physiological and immunological consequences of social status and aggression in chronically coexisting resident–intruder dyads of male rats. Physiol Behav 36:223–228

    Article  CAS  PubMed  Google Scholar 

  • Rea LD, Castellini MA, Fadely BS, Loughlin TR (1998) Health status of young Alaska Steller sea lion pups (Eumetopias jubatus) as indicated by blood chemistry and hematology. Comp Biochem Physiol A 120:617–623

    Article  CAS  Google Scholar 

  • Ritchie BW, Harrison JG, Harrison RL (1994) Avian Medicine. Winger’s Publishing Inc, Florida

    Google Scholar 

  • Robin J, Frain M, Sardet C, Groscolas R, LeMaho Y (1988) Protein and lipid utilization during long-term fasting in emperor penguins. Am J Physiol 254:R61–R68

    CAS  PubMed  Google Scholar 

  • Rodríguez P, Tortosa F, Villafuerte R (2005) The effects of fasting and refeeding on biochemical parameters in the red-legged partridge (Alectoris rufa). Comp Biochem Physiol A 140:157–164

    Article  Google Scholar 

  • Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. TREE 19:249–255

    PubMed  Google Scholar 

  • Romero LM, Dickens MJ, Cyr NE (2009) The reactive scope model: a new model integrating homeostasis, allostasis, and stress. Horm Behav 55:375–389

    Article  PubMed  Google Scholar 

  • Rønning B, Mortensen AS, Moe B, Chastel O, Arukwe A, Bech C (2009) Food restriction in young Japanese quails: effects on growth, metabolism, plasma thyroid hormones and mRNA species in the thyroid hormone signalling pathway. J Exp Biol 212:3060–3067

    Article  PubMed  Google Scholar 

  • Rostal MK, Evans AL, Solberg EJ, Arnemo JM (2012) Hematology and serum chemistry reference ranges of free-ranging moose (Alces alces) in Norway. J Wild Dis 43:548–559

    Article  Google Scholar 

  • Rymer TL, Pillay N, Schradin C (2016) Resilience to droughts in mammals: a conceptual framework for estimating vulnerability of a single species. Q Rev Biol 91:133–176

    Article  PubMed  Google Scholar 

  • Samuni-Blank M, Izhaki I, Dearing MD, Karasov WH, Gerchman Y, Kohl KD, Lymberakis P, Kurnath P, Arad Z (2013) Physiological and behavioural effects of fruit toxins on seed-predating versus seed-dispersing congeneric rodents. J Exp Biol 216:3667–3673

    Article  CAS  PubMed  Google Scholar 

  • Scantlebury M, Bennett NC, Speakman JR, Pillay N, Schradin C (2006) Huddling in groups leads to daily energy savings in free-living African four-striped grass mice, Rhabdomys pumilio. Func Ecol 20:166–173

    Article  Google Scholar 

  • Schoepf I, Schradin C (2012) Better off alone! Reproductive competition and ecological constraints determine sociality in the African striped mouse (Rhabdomys pumilio). J Anim Ecol 81:649–656

    Article  PubMed  Google Scholar 

  • Schoepf I, Schradin C (2013) Endocrinology of sociality: comparisons between sociable and solitary individuals within the same population of African striped mice. Horm Behav 64:89–94

    Article  CAS  PubMed  Google Scholar 

  • Schradin C (2008a) Differences in prolactin levels between three alternative male reproductive tactics in striped mice (Rhabdomys pumilio). P Roy Soc B 275:1047–1052

    Article  CAS  Google Scholar 

  • Schradin C (2008b) Seasonal changes in testosterone and corticosterone levels in four social classes of a desert dwelling sociable rodent. Horm Behav 53:573–579

    Article  CAS  PubMed  Google Scholar 

  • Schradin C, Pillay N (2004) The striped mouse (Rhabdomys pumilio) from the succulent karoo, South Africa: a territorial group-living solitary forager with communal breeding and helpers at the nest. J Comp Psychol 118:37–47

    Article  PubMed  Google Scholar 

  • Schradin C, Pillay N (2005) Demography of the striped mouse (Rhabdomys pumilio) in the succulent karoo. Mammal Biol 70:84–92

    Google Scholar 

  • Schradin C, Pillay N (2006) Female striped mice (Rhabdomys pumilio) change their home ranges in response to seasonal variation in food availability. Behav Ecol 17:452–458

    Article  Google Scholar 

  • Schradin C, Schubert M, Pillay N (2006) Winter huddling groups in the striped mouse. Can J Zool 84:693–698

    Article  Google Scholar 

  • Schradin C, Lindholm AK, Johannesen J, Schoepf I, Yuen CH, König B, Pillay N (2012) Social flexibility and social evolution in mammals: a case study of the African striped mouse (Rhabdomys pumilio). Mol Ecol 21:541–553

    Article  PubMed  Google Scholar 

  • Schradin C, Raynaud J, Arrive M, Blanc S (2014) Leptin levels in free ranging striped mice (Rhabdomys pumilio) increase when food decreases: the ecological leptin hypothesis. Gen Comp Endocrinol 206:139–145

    Article  CAS  PubMed  Google Scholar 

  • Schradin C, Pillay N, Kondratyeva A, Yuen CH, Schoepf I, Krackow S (2015) The ecology of blood glucose levels. Biol Lett 11:20150208

    Article  PubMed  PubMed Central  Google Scholar 

  • Schroeder MT (1984) Blood chemistry, hematology, and condition evaluation of black bears in Northcoastal California. Bears Biol Manag 7:333–349

    Google Scholar 

  • Schulte PM (2014) What is environmental stress? Insights from fish living in a variable environment. J Exper Biol 217:23–34

    Article  Google Scholar 

  • Simaraks S, Chinrasri O, Aengwanich W (2004) Hematological, electrolyte and serum biochemical values of the Thai indigenous chickens (Gallus domesticus) in northeastern, Thailand. Songklanakarin J Sci Tech 26:425–430

    Google Scholar 

  • Sreedhar S, Rao KS, Suresh J, Moorthy PRS, Reddy VP (2013) Changes in haematocrit and some serum biochemical profile of Sahiwal and Jersey × Sahiwal cows in tropical environments. Vet Arh 83:171–187

    CAS  Google Scholar 

  • Tavares-Dias M, Oliveira-Junior AA, Silva MG, Marcon JL, Barcellos JFM (2009) Comparative hematological and biochemical analysis of giant turtles from the Amazon farmed in poor and normal nutritional conditions. Vet Arh 79:601–610

    CAS  Google Scholar 

  • Teng WF, Sun WM, Shi LF, Hou DD, Liu H (2008) Effects of restraint stress on iron, zinc, calcium, and magnesium whole blood levels in mice. Biol Trace Elem Res 121:243–248

    Article  CAS  PubMed  Google Scholar 

  • Tocidlowski ME, Spelman LH, Sumner PW, Stoskopf MK (2000) Hematology and serum biochemistry parameters of North American river otters (Lontra canadensis). J Zoo Wildl Med 31:484–490

    Article  CAS  PubMed  Google Scholar 

  • Van Leeuwen AM, Poelhuis-Leth D (2009) Davis’s comprehensive handbook of laboratory and diagnostic tests: with nursing implications, 3rd edn. F. A. Davis Company, USA

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York, p 497

    Book  Google Scholar 

  • Wang T, Hung CC, Randall DJ (2006) The comparative physiology of food deprivation: from feast to famine. Annu Rev Physiol 68:223–251

    Article  PubMed  Google Scholar 

  • Werger MJA (1974) On concept and techniques applied in the Zürich–Montpellier method of vegetation survey. Bothalia 11:309–323

    Article  Google Scholar 

  • White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional to body mass 2/3. Proc Natl Acad Sci USA 100:4046–4049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods HA, Wilson JK (2013) An information hypothesis for the evolution of homeostasis. TREE 28:283–289

    PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. In: Krickeberg K, Samet JM, Tsiatis A, Wong W (eds) Gail M. Springer, New York

    Google Scholar 

  • Zysling DA, Garst AD, Demas GE (2009) Photoperiod and food restriction differentially affect reproductive and immune responses in Siberian hamsters Phodopus sungorus. Func Ecol 23:979–988

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the Department of Tourism, Environment and Conservation of the Northern Cape for issuing research permits. This study was made possible by the administrative and technical support of the Succulent Karoo Research Station, (registered South African NPO 122-134). Special thanks to the SKRS manager C.H. Yuen and the postdoc A. Maille, who helped with blood collection and to D. Padiachy for comments. We extend thanks to the manager and staff of the Goegap Nature Reserve for their support. Many thanks also go to Anjotech (Anjotech, Advanced Chemical Blood Analysis Systems, Johannesburg, South Africa), who generously donated some of the ABAXIS rotors used for the blood biochemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Schoepf.

Ethics declarations

Funding

This work was supported by The National Research Foundation (Grant number 80567) and the University of the Witwatersrand.

Conflict of interest

None of the authors have competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Animal ethics clearance was provided by the University of the Witwatersrand (AESC 2007/10/01 and 2007/39/04).

Additional information

Communicated by I.D. Hume.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoepf, I., Pillay, N. & Schradin, C. The pathophysiology of survival in harsh environments. J Comp Physiol B 187, 183–201 (2017). https://doi.org/10.1007/s00360-016-1020-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-1020-2

Keywords

Navigation