Skip to main content

Blood mixtures: impact of puncture site on blood parameters

Abstract

Various puncture routes, veins, arteries, heart, are used to take blood in animals. For anatomical reasons, differences in blood composition are expected among puncture sites. However, this issue has been rarely assessed and contrasted results have been reported: strong effects of puncture site versus a lack of effect. We captured free-ranging freshwater turtles from different locations to compare the mean concentrations of 12 blood parameters (metabolites, hormone, ions, and enzyme) among three puncture sites: (1) a lateral branch of the jugular vein, (2) a dorsal subcarapacial cervical plexus (sometimes incorrectly referred as the ‘cervical sinus’ in the literature), and (3) a caudal plexus site (sometimes incorrectly referred as the ‘caudal sinus’). Because we used very small syringes (27–30G), we were able to separate lymph, blood, or blood–lymph mixtures. Our results show very strong effects of puncture site and of mixture level (mean maximal difference between sites was 250 %). We also found strong sex and geographical effects. Typically, there were differences in concentrations of blood solutes sampled from the lateral jugular vein and subcarapacial plexus, mainly due to sampling a mixture of blood and lymph from the ‘blood’ at the subcarapacial site and pure blood from the lateral jugular site, and likewise, samples from the caudal site were highly variable due to often sampling a mixture of blood and lymph. These results have technical and fundamental implications, especially when performing comparative analyses. Further, by selecting precise puncture sites, physiological differences between lymph and blood compartments could be investigated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aasland KE, Skjerve E, Smith AJ (2010) Quality of blood samples from the saphenous vein compared with the tail vein during multiple blood sampling of mice. Lab Anim 44:25–29

    CAS  Article  PubMed  Google Scholar 

  • Aguirre AA, Balazs GH (2000) Blood biochemistry values of green turtles, Chelonia mydas, with and without fibropapillomatosis. Comp Haematol Int 10:132–137

    CAS  Article  Google Scholar 

  • Arnold JM, Oswald SA, Voigt CC, Palme R, Braasch A, Bauch C, Becker PH (2008) Taking the stress out of blood collection: comparison of field blood-sampling techniques for analysis of baseline corticosterone. J Avian Biol 39:588–592

    Article  Google Scholar 

  • Arora KL (2010) Differences in hemoglobin and packed cell volume in blood collected from different sites in Japanese quail (Coturnix japonica). Int J Poult Sci 9:828–830

    Article  Google Scholar 

  • Bernardi C, Monetal D, Brughera M, Di Salvo M, Lamparelli D, Mazue G, Iatropoulos MJ (1996) Haematology and clinical chemistry in rats: comparison of different blood collection sites. Comp Haematol Int 6:160–166

    Article  Google Scholar 

  • Bonnet X, Naulleau G, Mauget R (1994) The influence of body condition on 17-β Estradiol levels in relation to vitellogenesis in female Vipera aspis (Reptilia viperidae). Gen Comp Endocrinol 93:424–437

    CAS  Article  PubMed  Google Scholar 

  • Bonnet X, Naulleau G, Bradshaw D, Shine R (2001) Changes in plasma progesterone in relation to vitellogenesis and gestation in the viviparous snake, Vipera aspis. Gen Comp Endocrinol 121:84–94

    CAS  Article  PubMed  Google Scholar 

  • Bonnet X, Delmas V, El-Mouden H, Slimani T, Sterijovski B, Kuchling G (2010) Is sexual body shape dimorphism consistent in aquatic and terrestrial chelonians? Zoology 113:213–220

    Article  PubMed  Google Scholar 

  • Bonnet X, Fizesan A, Michel CL (2013) Shelter availability, stress level, and digestive performance in the aspic viper. J Exp Biol 216:815–822

    Article  PubMed  Google Scholar 

  • Brüssow KP, Schneider F, Tuchscherer A, Egerszegi I, Ratky J (2008) Comparison of luteinizing hormone, leptin and progesterone levels in the systemic circulation (Vena jugularis) and near the ovarian circulation (Vena cava caudalis) during the oestrous cycle in Mangalica and Landrace gilts. J Reprod Dev 54:431–438

    Article  PubMed  Google Scholar 

  • Bulté G, Verly C, Blouin-Demers G (2006) An improved blood sampling technique for hatchling emydid turtles. Herpetol Rev 37:318–319

    Google Scholar 

  • Chan YK, Davis PF, Poppitt SD, Sun X, Greenhill NS, Krishnamurthi R, Przepiorski A, McGi AT, Krissansen GW (2012) Influence of tail versus cardiac sampling on blood glucose and lipid profiles in mice. Lab Anim 46:142–147

    CAS  Article  PubMed  Google Scholar 

  • Christensen SD, Mikkelsen LF, Fels JJ, Bodvarsdottir TB, Hansen AK (2009) Quality of plasma sampled by different methods for multiple blood sampling in mice. Lab Anim 43:65–71

    CAS  Article  PubMed  Google Scholar 

  • Christopher MM, Berry KH, Wallis IR, Nagy KA, Henen BT, Peterson CC (1999) Reference intervals and physiologic alterations in hematologic and biochemical values of free-ranging desert tortoises in the Mojave Desert. J Wildl Dis 35:212–238

    CAS  Article  PubMed  Google Scholar 

  • Clarke IJ, Cummins JT (1982) The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology 111:1737–1739

    CAS  Article  PubMed  Google Scholar 

  • Costa DP, Sinervo B (2004) Field physiology: physiological insights from animals in nature. Annu Rev Physiol 66:209–238

    CAS  Article  PubMed  Google Scholar 

  • Crait JR, Prange HD, Marshall NA, Harlow HJ, Cotton CJ, Ben-David M (2012) High-altitude diving in river otters: coping with combined hypoxic stresses. J Exp Biol 215:256–263

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Cuadrado M, Molina-Prescott I, Flores L (2003) Comparison between tail and jugular venipuncture techniques for blood sample collection in common chameleons (Chamaeleo chamaeleon). Vet J 166:93–97

    Article  PubMed  Google Scholar 

  • Dahan R, Sutton GA, Oreff GL, Kelmer G (2015) Agreement among three different equine venipuncture sites with regard to measurement of packed cell volume and total solids. Aust Vet J 93:109–111

    CAS  Article  PubMed  Google Scholar 

  • Drake KK, Nussear KE, Esque TC, Barber AM, Vittum KM, Medica PA, Tracy CR, Hunter KW (2012) Does translocation influence physiological stress in the desert tortoise? Anim Conserv 15:560–570

    Article  Google Scholar 

  • Dupoué A, Angelier F, Lourdais O, Bonnet X, Brischoux F (2014) Effect of water deprivation on baseline and stress-induced corticosterone levels in the Children’s python (Antaresia childreni). Comp Biochem Physiol 168:11–16

    Article  Google Scholar 

  • Dyer SM, Cervasio EL (2008) An overview of restraint and blood collection techniques in exotic pet practice. Vet Clin N Am Exot Anim Pract 11:423–443

    Article  Google Scholar 

  • Evron S, Tress V, Ezri T, Szmuk P, Landau O, Hendel D, Schechter P, Medalion B (2007) The importance of blood sampling site for determination of hemoglobin and biochemistry values in major abdominal and orthopedic surgery. J Clin Anesth 19:92–96

    Article  PubMed  Google Scholar 

  • Fauvel T, Brischoux F, Briand MJ, Bonnet X (2012) Do researchers impact their study populations? Assessing the effect of field procedures in a long term population monitoring of sea kraits. Amphib Reptil 33:365–372

    Article  Google Scholar 

  • Fazio E, Liotta A, Medica P, Giacoppo E, Ferlazzo A (2012) Effects of different health status on blood haematochemical values of loggerhead sea turtles (Caretta caretta). Comp Clin Pathol 21:105–109

    Article  Google Scholar 

  • Feder ME (1987) New directions in ecological physiology: conclusion. In: Feder ME, Bennett AF, Burggren WW, Huey RB (eds) New directions in ecological physiology. Cambridge University Press, Cambridge, pp 347–351

    Google Scholar 

  • Feder ME, Block BA (1991) On the future of animal physiological ecology. Funct Ecol 5:136–144

    Article  Google Scholar 

  • Fernández I, Peña A, Del Teso N, Pérez V, Rodríguez-Cuesta J (2010) Clinical biochemistry parameters in C57BL/6J mice after blood collection from the submandibular vein and retroorbital plexus. J Am Assoc Lab Anim Sci 49:202–206

    PubMed  PubMed Central  Google Scholar 

  • Fluttert M, Dalm S, Oitzl MS (2000) A refined method for sequential blood sampling by tail incision in rats. Lab Anim 34:372–378

    CAS  Article  PubMed  Google Scholar 

  • Fritz U, Barata M, Busack SD, Fritzsch G, Castilho R (2006) Impact of mountain chains, sea straits and peripheral populations on genetic and taxonomic structure of a freshwater turtle, Mauremys leprosa (Reptilia, Testudines, Geoemydidae). Zool Scr 35:97–108

    Article  Google Scholar 

  • Gottdenker NL, Jacobson ER (1995) Effect of venipuncture sites on hematologic and clinical biochemical values in desert tortoises (Gopherus agassizii). Am J Vet Res 56:19

    CAS  PubMed  Google Scholar 

  • Hasbún CR, Lawrence AJ, Naldo J, Samour JH, Al-Ghais SM (1998) Normal blood chemistry of free-living green sea turtles, Chelonia mydas, from the United Arab Emirates. Comp Haematol Int 8:174–177

    Article  Google Scholar 

  • Hem A, Smith AJ, Solberg P (1998) Saphenous vein puncture for blood sampling of the mouse, rat, hamster, gerbil, guinea pig, ferret and mink. Lab Anim 32:364–368

    CAS  Article  PubMed  Google Scholar 

  • Hoggatt J, Hoggatt AF, Tate TA, Fortman J, Pelus LM (2015) Bleeding the laboratory mouse: not all methods are equal. Exp Hematol 44:132–137

    Article  PubMed  Google Scholar 

  • Hunter BG, Schlipf JW, Cebra C (2013) Comparison of transverse facial venous sinus and jugular blood values in healthy and critically ill horses. Equine Vet J 45:15–19

    Article  Google Scholar 

  • Jacobson ER (2000) Collecting biological samples for clinical evaluation. Concepts of reptile disease and surgical techniques. University of Florida. http://enfermagemveterinaria.esa.ipcb.pt/docs/biolsampcoll.pdf. Accessed 1 Feb 2016

  • Jensen AL, Wenck A, Koch J, Poulsen JD (1994) Comparison of results of haematological and clinical chemical analyses of blood samples obtained from the cephalic and external jugular veins in dogs. Res Vet Sci 56:24–29

    CAS  Article  PubMed  Google Scholar 

  • Johnson AL (1981) Comparison of three serial blood sampling techniques on plasma hormone concentrations in the laying hen. Poult Sci 60:2322–2327

    CAS  Article  PubMed  Google Scholar 

  • Keller C (1997) Ecología de poblaciones de Mauremys leprosa y Emys orbicularis en el Parque Nacional Doñana. PhD Thesis, Universidad de Sevilla

  • Kurle CM (2002) Stable-isotope ratios of blood components from captive northern fur seals (Callorhinus ursinus) and their diet: applications for studying the foraging ecology of wild otariids. Can J Zool 80:902–909

    Article  Google Scholar 

  • Lagarde F, Bonnet X, Henen B, Nagy K, Corbin J, Lacroix A, Trouvé C (2003) Plasma steroid and nutrient levels during the active season in wild Testudo horsfieldi. Gen Comp Endocrinol 134:139–146

    CAS  Article  PubMed  Google Scholar 

  • Lefevre A, Ballesta S, Pozzobon M, Charieau JL, Duperrier S, Sirigu A, Duhamel JR (2015) Blood microsampling from the ear capillary in non-human primates. Lab Anim 49:349–352

    CAS  Article  PubMed  Google Scholar 

  • Lindman HR (1974) Analysis of variance in complex experimental designs. WH Freeman and Co, New York

    Google Scholar 

  • López-Olvera JR, Montané J, Marco I, Martínez-Silvestre A, Soler J, Lavín S (2003) Effect of venipuncture site on hematologic and serum biochemical parameters in marginated tortoise (Testudo marginata). J Wildl Dis 39:830–836

    Article  PubMed  Google Scholar 

  • Mashhadi VN, Mishmast Z, Mohri M, Seifi HA (2009) Variation of serum calcium, phosphorus and magnesium concentrations due to venipuncture site in Holstein dairy cows. Comp Clin Pathol 18:149–152

    Article  Google Scholar 

  • Medeiros NC, Locatelli-Dittrich R, Schmidt EM, Alvares AA, Patrício LL, Lange RR, de Souza RA (2012) Efeito do sítio de venopunção nos parâmetros hematológicos em tigre-d’água-americano, Trachemys scripta elegans. Pesquisa Veterinária Brasileira 32:37–40

    Article  Google Scholar 

  • Meir JU, Milsom WK (2013) High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose. J Exp Biol 216:2172–2175

    CAS  Article  PubMed  Google Scholar 

  • Mella JR, Chiswick EL, King E, Remick DG (2014) Location, location, location: cytokine concentrations are dependent on blood sampling site. Shock 42:337–342

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Michel CL, Bonnet X (2014) Effect of a brief stress on progesterone plasma levels in pregnant and non-pregnant guinea pigs. Anim Biol 64:19–29

    Article  Google Scholar 

  • Miller M (2003) Effect of venipuncture site and anticoagulant on selected hematologic values in black rhinoceros (Diceros bicornis). J Zoo Wildl Med 34:59–64

    Article  PubMed  Google Scholar 

  • Moniello G, Bovera F, Solinas IL, Piccolo G, Pinna W, Nizza A (2005) Effect of age and blood collection site on the metabolic profile of ostriches. South Afr J Anim Sci 35:268–272

    Google Scholar 

  • Muñoz FJ, Galván A, Lerma M, De la Fuente M (2000) Seasonal changes in peripheral blood leukocyte functions of the turtle Mauremys caspica and their relationship with corticosterone, 17-β-estradiol and testosterone serum levels. Vet Immunol Immunopathol 77:27–42

    Article  PubMed  Google Scholar 

  • Mylniczenko ND, Curtis EW, Wilborn RE, Young FA (2006) Differences in hematocrit of blood samples obtained from two venipuncture sites in sharks. Am J Vet Res 67:1861–1864

    Article  PubMed  Google Scholar 

  • Nemzek JA, Bolgos GL, Williams BA, Remick DG (2001) Differences in normal values for murine white blood cell counts and other hematological parameters based on sampling site. Inflamm Res 50:523–527

    CAS  Article  PubMed  Google Scholar 

  • Oliver G, Detmar M (2002) The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 16:773–783

    CAS  Article  PubMed  Google Scholar 

  • Ottaviani G, Tazzi A (1977) The lymphatic system. In: Gans C, Parsons TS (eds) Biology of the reptilia, vol 6. Academic Press, New York, pp 315–462

    Google Scholar 

  • Perpiñán D, Armstrong DL, Dórea F (2010) Effect of anticoagulant and venipuncture site on hematology and serum chemistries of the spiny softshell turtle (Apalone spinifera). J Herpetol Med Surg 20:74–78

    Article  Google Scholar 

  • Promislow DE (1991) The evolution of mammalian blood parameters: patterns and their interpretation. Physiol Zool 64:393–431

    Article  Google Scholar 

  • Reynolds SJ, Christian KA, Tracy CR (2009) Application of a method for obtaining lymph from anuran amphibians. J Herpetol 43:148–153

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rogers IT, Holder DJ, Mcpherson HE, Acker WR, Brown EG, Washington MV, Motzel SL, Klein HJ (1999) Influence of blood collection sites on plasma glucose and insulin concentration in conscious C57BL/6 mice. J Am Assoc Lab Anim Sci 38:25–28

    Google Scholar 

  • Salemink PJM, Korsten J, De Leeuw P (1994) Prothrombin times and activated partial thromboplastin times in toxicology: a comparison of different blood withdrawal sites for Wistar rats. Comp Haematol Int 4:173–176

    Article  Google Scholar 

  • Schwabenbauer C (1991) Influence of the blood sampling site on some haematological and clinical-chemical parameters in sprague-dawley rats. Comp Haematol Int 1:112–116

    Article  Google Scholar 

  • Seymour RS (1979) Blood lactate in free-diving sea snakes. Copeia 1979:494–497

    Article  Google Scholar 

  • Stewart K, Mitchell MA, Norton T, Krecek RC (2012) Measuring the level of agreement in hematologic and biochemical values between blood sampling sites in leatherback sea turtles (Dermochelys coriacea). J Zoo Wildl Med 43:719–725

    Article  PubMed  Google Scholar 

  • Stoot LJ, Cairns NA, Cull F, Taylor JJ, Jeffrey JD, Morin F, Mandelman JW, Clark TD, Cooke SJ (2014) Use of portable blood physiology point-of-care devices for basic and applied research on vertebrates: a review. Conserv Physiol. doi:10.1093/conphys/cou011

    PubMed  PubMed Central  Google Scholar 

  • Tietz NW, Rinker D, Shaw LM (1983) IFCC method for alkaline phosphatase. J Clin Chem Clin Biochem 21:731–748

    CAS  PubMed  Google Scholar 

  • Tretbar LL (2008) Structure and Function of the Lymphatic System. In: Tretbar LL, Morgan CL, Lee BB, Simonian SJ, Blondeau B (eds) Lymphedema: diagnosis and treatment. Springer, London, pp 1–11

    Chapter  Google Scholar 

  • Van Herck H, Baumans V, Brandt CJWM, Hesp APM, Sturkenboom JH, Van Lith HA, Beynen AC (1998) Orbital sinus blood sampling in rats as performed by different animal technicians: the influence of technique and expertise. Lab Anim 32:377–386

    Article  PubMed  Google Scholar 

  • Virolainen JV, Love RJ, Tast A, Peltoniemi OA (2005) Plasma progesterone concentration depends on sampling site in pigs. Anim Reprod Sci 86:305–316

    CAS  Article  PubMed  Google Scholar 

  • Voss M, Shutler D, Werner J (2010) A hard look at blood sampling of birds. Auk 127:704–708

    Article  Google Scholar 

  • Walker AM (1933) Comparison of the chemical composition of aqueous humor, cerebrospinal fluid, lymph, and blood from frogs, higher animals and man. J Biol Chem 101:269–287

    CAS  Google Scholar 

  • Warren MF (1940) The lymphatic system. Annu Rev Physiol 2:109–124

    CAS  Article  Google Scholar 

  • Weitten M, Robin JP, Oudart H, Pévet P, Habold C (2013) Hormonal changes and energy substrate availability during the hibernation cycle of Syrian hamsters. Hormon Behav 64:611–617

    CAS  Article  Google Scholar 

  • Wells RMG, Tetens V, Devries AL (1984) Recovery from stress following capture and anaesthesia of antarctic fish: haematology and blood chemistry. J Fish Biol 25:567–576

    CAS  Article  Google Scholar 

  • Wess G, Reusch C (2000) Capillary blood sampling from the ear of dogs and cats and use of portable meters to measure glucose concentration. J Small Anim Pract 41:60–66

    CAS  Article  PubMed  Google Scholar 

  • Wiedmeyer CE, Johnson PJ, Cohn LA, Meadows RL (2003) Evaluation of a continuous glucose monitoring system for use in dogs, cats, and horses. J Am Vet Med Assoc 223:987–992

    CAS  Article  PubMed  Google Scholar 

  • Zawieja D (2005) Lymphatic biology and the microcirculation: past, present and future. Microcirculation 12:141–150

    CAS  Article  PubMed  Google Scholar 

  • Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32:95–126

    Article  Google Scholar 

Download references

Acknowledgments

We thank Tony Chevalier, François Brischoux, and Mohamed Radi for their help during field work. Two reviewers provided abundant and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Bonnet.

Ethics declarations

Conflict of interest

The authors declare that no competing interest.

Funding

This work was supported by the Hassan II Academy of Sciences and Technics (ICGVSA project).

Data availability

The dataset used in this study would be deposited in the dryad platform (http://datadryad.org).

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonnet, X., El Hassani, M.S., Lecq, S. et al. Blood mixtures: impact of puncture site on blood parameters. J Comp Physiol B 186, 787–800 (2016). https://doi.org/10.1007/s00360-016-0993-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-0993-1

Keywords

  • Corticosterone
  • Lymph
  • Plasma metabolites
  • Hemodilution
  • Turtle