Skip to main content

Advertisement

Log in

The response of claudin-like transmembrane septate junction proteins to altered environmental ion levels in the larval mosquito Aedes aegypti

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Septate junctions (SJs) occlude the paracellular pathway and function as paracellular diffusion barriers within invertebrate epithelia. However, integral components of SJs and their contribution to barrier properties have received considerably less attention than those of vertebrate occluding junctions. In arthropods, SJ proteins have only been identified in Drosophila and among these are three integral claudin-like proteins, Megatrachea (Mega), Sinuous (Sinu) and Kune-kune (Kune), as well as a receptor-like transmembrane SJ protein known as Neurexin IV (Nrx IV). In this study, mega, sinu, kune and nrx IV are identified and characterized in aquatic larvae of the mosquito Aedes aegypti and a role for these proteins in ionoregulatory homeostasis is considered. Transcripts encoding Mega, Sinu, Kune and Nrx IV were found in iono/osmoregulatory tissues such as the midgut, Malpighian tubules, hindgut and anal papillae, but abundance was greater in the hindgut and anal papillae. Using immunohistochemical and western blot analysis it was found that Kune localized to the regions of intercellular contact between epithelial cells of the rectum and posterior midgut and in the apical membrane domain of the syncytial epithelium of anal papillae. To investigate a potential role for integral SJ proteins in larval A. aegypti iono/osmoregulation, abundance was examined in animals reared in freshwater or brackish water (30 % seawater). In iono/osmoregulatory epithelia, larvae exhibited tissue-specific alterations in mega mRNA and Kune protein abundance, but not sinu or nrx IV mRNA. These studies provide a first look at the potential contribution of integral SJ components to iono/osmoregulatory homeostasis in an aquatic invertebrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JM, Van Itallie M (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584

    Article  PubMed  PubMed Central  Google Scholar 

  • Angelow S, Ahlstrom R, Yu ASL (2008) Biology of claudins. Am J Physiol Renal Physiol 295:F867–F876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano A, Asano K, Sasaki H, Furuse M, Tsukita S (2003) Claudins in Caenorhabditis elegans: their distribution and barrier function in the epithelium. Curr Biol 13:1042–1046

    Article  CAS  PubMed  Google Scholar 

  • Bagherie-Lachidan M, Wright SI, Kelly SP (2008) Claudin-3 tight junction proteins in Tetraodon nigroviridis: cloning, tissue-specific expression, and a role in hydromineral balance. Am J Physiol Regul Integr Comp Physiol 294:R1638–R1647

    Article  CAS  PubMed  Google Scholar 

  • Baumann O (2001) Posterior midgut epithelial cells differ in their organization of the membrane skeleton from other Drosophila epithelia. Exp Cell Res 270:176–187

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner S, Littleton JT, Broadie K, Bhat MA, Harbecke R, Lengyel JA, Chiquet-Ehrismann R, Prokop A, Bellen HJ (1996) A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell 87:1059–1068

    Article  CAS  PubMed  Google Scholar 

  • Behr M, Riedel D, Schuh R (2003) The claudin-like Megatrachea is essential in septate junctions for the epithelial barrier function in Drosophila. Dev Cell 5:611–620

    Article  CAS  PubMed  Google Scholar 

  • Beyenbach KW, Piermarini PM (2011) Transcellular and paracellular pathways of transepithelial fluid secretion in Malpighian (renal) tubules of the yellow fever mosquito Aedes aegypti. Acta Physiol (Oxf) 202:387–407. doi:10.1111/j.1748-1716.2010.02195.x

    Article  CAS  Google Scholar 

  • Bradley TJ (1994) The role of physiological capacity, morphology, and phylogeny in determining habitat use in mosquitoes. In: Wainwright PC, Reilly SM (eds) Ecological morphology. The University of Chicago Press, Chicago, pp 303–318

    Google Scholar 

  • Bui P, Kelly SP (2014) Claudin-6, -10d, and -10e contribute to seawater acclimation in the euryhaline puffer fish Tetraodon nigroviridis. J Exp Biol 217:1758–1767

    Article  CAS  PubMed  Google Scholar 

  • Byri S, Misra T, Syed ZA, Bätz T, Shah J, Boril L, Glashauser J, Aegerter-Wilmsen T, Matzat T, Moussian B, Uv A, Luschnig S (2015) The triple-repeat protein anakonda controls epithelial tricellular junction formation in Drosophila. Dev Cell 33:535–548. doi:10.1016/j.devcel.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  • Chasiotis H, Kelly SP (2008) Occludin immunolocalization and protein expression in goldfish. J Exp Biol 211:1524–1534

    Article  CAS  PubMed  Google Scholar 

  • Chasiotis H, Kelly SP (2009) Occludin and hydromineral balance in Xenopus laevis. J Exp Biol 212:287–296

    Article  CAS  PubMed  Google Scholar 

  • Chasiotis H, Kolosov D, Kelly SP (2012a) Permeability properties of the teleost fish gill epithelium under ion-poor conditions. Am J Physiol Regul Integr Comp Physiol 302:R727–R739

    Article  CAS  PubMed  Google Scholar 

  • Chasiotis H, Kolosov D, Bui P, Kelly SP (2012b) Tight junctions, tight junction proteins and paracellular permeability across the gill epithelium of fishes: a review. Resp Physiol Neurobiol 184:269–281

    Article  CAS  Google Scholar 

  • Clark TM, Koch A, Moffett DF (1999) The anterior and posterior ʻstomach’ regions of larval Aedes aegypti midgut: regional specialization of ion transport and stimulation by 5-hydroxytryptamine. J Exp Biol 202:247–252

    CAS  PubMed  Google Scholar 

  • Clark TM, Koch A, Moffett DF (2000) The electrical properties of the anterior stomach of the larval mosquito (Aedes aegypti). J Exp Biol 203:1093–1101

    CAS  PubMed  Google Scholar 

  • Clark TM, Hutchinson MJ, Huegel KL, Moffett SB, Moffett DF (2005) Additional morphological and physiological heterogeneity within the midgut of larval Aedes aegypti (Diptera: Culicidae) revealed by histology, electrophysiology, and effects of Bacillus thuringiensis endotoxin. Tissue Cell 37:457–468

    Article  CAS  PubMed  Google Scholar 

  • Clements AN (1992) The biology of mosquitoes, vol 1. Chapman & Hall, London

    Google Scholar 

  • Del Duca O, Nasirian A, Galperin V, Donini A (2011) Pharmacological characterisation of apical Na+ and Cl transport mechanisms of the anal papillae in the larval mosquito Aedes aegypti. J Exp Biol 214:3992–3999. doi:10.1242/jeb.063719

    Article  PubMed  Google Scholar 

  • Donini A, O’Donnell MJ (2005) Analysis of Na+, Cl, K+, H+ and NH4 + concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. J Exp Biol 208:603–610

    Article  CAS  PubMed  Google Scholar 

  • Donini A, Patrick ML, Bijelic G, Christensen RJ, Ianowski JP, Rheault MR, O’Donnell MJ (2006) Secretion of water and ions by Malpighian tubules of larval mosquitoes: effects of diuretic factors, second messengers, and salinity. Physiol Biochem Zool 79:645–655

    Article  CAS  PubMed  Google Scholar 

  • Donini A, Gaidhu MP, Strasberg D, O’Donnell MJ (2007) Changing salinity induces alterations in hemolymph ion concentrations and Na+ and Cl transport kinetics of the anal papillae in the larval mosquito, Aedes aegypti. J Exp Biol 210:983–992

    Article  CAS  PubMed  Google Scholar 

  • Duffy NM, Bui P, Bagherie-Lachidan M, Kelly SP (2011) Epithelial remodeling and claudin mRNA abundance in the gill and kidney of puffer fish (Tetraodon biocellatus) acclimated to altered environmental ion levels. J Comp Physiol B 181:219–238

    Article  CAS  PubMed  Google Scholar 

  • Edwards HA (1982) Aedes aegypti: energetics of osmoregulation. J Exp Biol 101:135–141

    Google Scholar 

  • Edwards HA, Harrison JB (1983) An osmoregulatory syncytium and associated cells in a freshwater mosquito. Tissue Cell 15:271–280

    Article  CAS  PubMed  Google Scholar 

  • Flower NE, Filshie BK (1975) Junctional structures in the midgut cells of lepidopteran caterpillars. J Cell Sci 17:221–239

    CAS  PubMed  Google Scholar 

  • Fournier ML, Paulson A, Pavelka N, Mosley AL, Gaudenz K, Bradford WD, Glynn E, Li H, Sardiu ME, Fleharty B, Seidel C, Florens L, Washburn MP (2010) Delayed correlation of mRNA and protein expression in rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to rapamycin. Mol Cell Proteomics 9:271–284. doi:10.1074/mcp.M900415-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147:891–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganot P, Zoccola D, Tambutté E, Voolstra CR, Aranda M, Allemand D, Tambutté S (2015) Structural molecular components of septate junctions in cnidarians point to the origin of epithelial junctions in eukaryotes. Mol Biol Evol 32:44–62. doi:10.1093/molbev/msu265

    Article  CAS  PubMed  Google Scholar 

  • Green CR, Bergquist PR (1982) Phylogentic relationships within the invertebrates in relation to the structure of septate junctions and the development of ‘occluding’ junctional types. J Cell Sci 53:279–305

    Google Scholar 

  • Gregory M, Dufresne J, Hermo L, Cyr D (2001) Claudin-1 is not restricted to tight junctions in the rat epididymis. Endocrinology 142:854–863

    CAS  PubMed  Google Scholar 

  • Günzel D, Yu ASL (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569. doi:10.1152/physrev.00019.2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Ionescu A, Donini A (2012) Aedes CAPA-PVK-1 displays diuretic and dose dependent antidiuretic potential in the larval mosquito Aedes aegypti (Liverpool). J Insect Physiol 58:1299–1306

    Article  CAS  PubMed  Google Scholar 

  • Izumi Y, Furuse M (2014) Molecular organization and function of invertebrate occluding junctions. Semin Cell Dev Biol 36:186–193

    Article  CAS  PubMed  Google Scholar 

  • Izumi Y, Yanagihashi Y, Furuse M (2012) A novel protein complex, Mesh-Ssk, is required for septate junction formation in the Drosophila midgut. J Cell Sci 125:4923–4933

    Article  CAS  PubMed  Google Scholar 

  • Jagadeshwaran U, Onken H, Hardy M, Moffett SB, Moffett DF (2010) Cellular mechanisms of acid secretion in the posterior midgut of the larval mosquito (Aedes aegypti). J Exp Biol 213:295–300

    Article  CAS  PubMed  Google Scholar 

  • Jaspers MH, Nolde K, Behr M, Joo SH, Plessmann U, Nikolov M, Urlaub H, Schuh R (2012) The claudin Megatrachea protein complex. J Biol Chem 287:36756–36765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonusaite S, Kelly SP, Donini A (2011) The physiological response of larval Chironomus riparius (Meigen) to abrupt brackish water exposure. J Comp Physiol B 181:343–352

    Article  CAS  PubMed  Google Scholar 

  • Jonusaite S, Kelly SP, Donini A (2013) Tissue-specific ionomotive enzyme activity and K+ reabsorption reveal the rectum as an important ionoregulatory organ in larval Chironomus riparius exposed to varying salinity. J Exp Biol 216:3637–3648. doi:10.1242/jeb.089219

    Article  CAS  PubMed  Google Scholar 

  • Jonusaite S, Donini A, Kelly SP (2016) Occluding junctions of invertebrate epithelia. J Comp Physiol B 186:17–43

    Article  PubMed  Google Scholar 

  • Kaushal SS, Groffman PM, Likens GE, Belt KT, Stack WP, Kelly VR, Band LE, Fisher GT (2005) Increased salinization of fresh water in the northeastern United States. PNAS 102:13517–13520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knust E, Bossinger O (2002) Composition and formation of intercellular junctions in epithelial cells. Science 298:1955–1959

    Article  CAS  PubMed  Google Scholar 

  • Kolosov D, Kelly SP (2013) A role for tricellulin in the regulation of gill epithelium permeability. Am J Physiol Regul Integr Comp Physiol 304:R1139–R1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolosov D, Bui P, Chasiotis H, Kelly SP (2013) Claudins in teleost fishes. Tissue Barriers 1:e25391. doi:10.4161/tisb.25391

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolosov D, Chasiotis H, Kelly SP (2014) Tight junction protein gene expression patterns and changes in transcript abundance during development of model fish gill epithelia. J Exp Biol 217:1667–1681

    Article  CAS  PubMed  Google Scholar 

  • Kumai Y, Bahubeshi A, Steele S, Perry SF (2011) Strategies for maintaining Na+ balance in zebrafish (Danio rerio) during prolonged exposure to acid water. Comp Biochem Physiol 160A:52–62

    Article  Google Scholar 

  • Kwong RM, Perry SF (2013) The tight junction protein claudin-b regulates epithelial permeability and sodium handling in larval zebrafish, Danio rerio. Am J Physiol Regul Integr Comp Physiol 304:R504–R513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane NJ, Skaer HB (1980) Intercellular junctions in insect tissues. In: Berridge MJ, Treherne JE, Wigglesworth VB (eds) Advances in insect physiology, vol 15. Academic Press, London, pp 35–213

    Google Scholar 

  • Laprise P, Lau KM, Harris KP, Silva-Gagliardi NF, Paul SM, Beronja S, Beitel GJ, McGlade CJ, Tepass U (2009) Yurt, Coracle, Neurexin IV and the Na(+), K(+)-ATPase form a novel group of epithelial polarity proteins. Nature 459:1141–1145. doi:10.1038/nature08067

    Article  CAS  PubMed  Google Scholar 

  • Laprise P, Paul SM, Boulanger J, Robbins RM, Beitel GJ, Tepass U (2010) Epithelial polarity proteins regulate Drosophila tracheal tube size in parallel to the luminal matrix pathway. Curr Biol 20:55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Littleton JT, Bhat MA, Bellen HJ (1997) Deciphering the function of neurexins at cellular junctions. J Cell Biol 137:793–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luquet C, Pellerano G, Rosa G (1997) Salinity-induced changes in the fine structure of the gills of the semiterrestrial estuarian crab, Uca uruguayensis (Nobili, 1901) (Decapoda, Ocypodidae). Tissue Cell 29:495–501

    Article  CAS  PubMed  Google Scholar 

  • Luquet CM, Genovese G, Rosa GA, Pellerano GN (2002) Ultrastructural changes in the gill epithelium of the crab Chasmagnathus granulates (Decapoda: Grapsidae) in diluted and concentrated seawater. Mar Bio 141:753–760

    Article  Google Scholar 

  • Nelson KS, Furuse M, Beitel GJ (2010) The Drosophila Claudin Kune-kune is required for septate junction organization and tracheal tube size control. Genetics 185:831–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noirot-Timothee C, Noirot C (1980) Septate and scalariform junctions in arthropods. Int Rev Cytol 63:97–141

    Article  CAS  PubMed  Google Scholar 

  • Onken H, Moffett DF (2009) Revisiting the cellular mechanisms of strong luminal alkalinization in the anterior midgut of larval mosquitoes. J Exp Biol 212:373–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrick ML, Bradley TJ (2000) The physiology of salinity tolerance in larvae of two species of Culex mosquitoes: the role of compatible solutes. J Exp Biol 203:821–830

    CAS  PubMed  Google Scholar 

  • Patrick ML, Gonzalez RJ, Bradley TJ (2001) Sodium and chloride regulation in freshwater and osmoconforming larvae of Culex mosquitoes. J Exp Biol 204:3345–3354

    CAS  PubMed  Google Scholar 

  • Patrick ML, Aimanova K, Sanders HR, Gill SS (2006) P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti. J Exp Biol 209:4638–4651

    Article  CAS  PubMed  Google Scholar 

  • Pond GJ, Passmore ME, Borsuk FA, Reynolds L, Rose CA (2008) Downstream effects of moutaintop coal mining: comparing biological conditions using family and genus-level macroinvertebrate bioassessment tools. J North Am Benthol Soc 127:717–737

    Article  Google Scholar 

  • Ramasamy R, Surendran SN (2012) Global climate change and its potential impact on disease transmission by salinity-tolerant mosquito vectors in coastal zones. Front Physiol 3:198. doi:10.3389/fphys.2012.00198

    Article  PubMed  PubMed Central  Google Scholar 

  • Simske JS, Hardin J (2011) Claudin family proteins in Caenorhabditis elegans. Methods Mol Biol 762:147–169. doi:10.1007/978-1-61779-185-7_11

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Copeland E (1966) Ultrastructural variations in the anal papillae of Aedes aegypti (L) at different environmental salinities. J Insect Physiol 12:429–434

    Article  CAS  PubMed  Google Scholar 

  • Stork T, Engelen D, Krudewig A, Silies M, Bainton RJ, Klämbt C (2008) Organization and function of the blood-brain barrier in Drosophila. J Neurosci 28:587–597

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Ito Y, Yamazaki Y, Mineta K, Uji M, Abe K, Tani K, Fujiyoshi Y, Tsukita S (2013) The four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat. Nat Commun 4:1766. doi:10.1038/ncomms2731

    Article  PubMed  PubMed Central  Google Scholar 

  • Tepass U, Tanentzapf G, Ward R, Fehon R (2001) Epithelial cell polarity and cell junctions in Drosophila. Annu Rev Genet 35:747–784

    Article  CAS  PubMed  Google Scholar 

  • Tipsmark CK, Kiilerich P, Nilsen TO, Ebbesson LOE, Stefansson SO, Madsen SS (2008) Branchial expression patterns of claudin isoforms in Atlantic salmon during seawater acclimation and smoltification. Am J Physiol Integr Regul Comp Physiol 294:R1563–R1574

    Article  CAS  Google Scholar 

  • Van Itallie CM, Anderson JM (2013) Claudin interactions in and out of the tight junction. Tissue Barriers 1:e25247. doi:10.4161/tisb.25247

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams WD (2001) Anthropogenic salinization of inland waters. Hydrobiol 466:329–337

    Article  Google Scholar 

  • Wu VM, Schulte J, Hirschi A, Tepass U, Beitel GJ (2004) Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control. J Cell Biol 164:313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagihashi Y, Usui T, Izumi Y, Yonemura S, Sumida M, Tsukita S, Uemura T, Furuse M (2012) Snakeskin, a membrane protein associated with smooth septate junctions, is required for intestinal barrier function in Drosophila. J Cell Sci 125:1980–1990

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grants to SPK and AD, an Ontario Graduate Scholarship to SJ. The authors would like to thank Dr. Mikio Furuse for anti-Kune antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sima Jonusaite.

Ethics declarations

Competing interests

No competing interests declared.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonusaite, S., Kelly, S.P. & Donini, A. The response of claudin-like transmembrane septate junction proteins to altered environmental ion levels in the larval mosquito Aedes aegypti . J Comp Physiol B 186, 589–602 (2016). https://doi.org/10.1007/s00360-016-0979-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-0979-z

Keywords

Navigation