Skip to main content
Log in

Lipid-induced thermogenesis is up-regulated by the first cold-water immersions in juvenile penguins

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The passage from shore to marine life is a critical step in the development of juvenile penguins and is characterized by a fuel selection towards lipid oxidation concomitant to an enhancement of lipid-induced thermogenesis. However, mechanisms of such thermogenic improvement at fledging remain undefined. We used two different groups of pre-fledging king penguins (Aptenodytes patagonicus) to investigate the specific contribution of cold exposure during water immersion to lipid metabolism. Terrestrial penguins that had never been immersed in cold water were compared with experimentally cold-water immersed juveniles. Experimentally immersed penguins underwent ten successive immersions at approximately 9–10 °C for 5 h over 3 weeks. We evaluated adaptive thermogenesis by measuring body temperature, metabolic rate and shivering activity in fully immersed penguins exposed to water temperatures ranging from 12 to 29 °C. Both never-immersed and experimentally immersed penguins were able to maintain their homeothermy in cold water, exhibiting similar thermogenic activity. In vivo, perfusion of lipid emulsion at thermoneutrality induced a twofold larger calorigenic response in experimentally immersed than in never-immersed birds. In vitro, the respiratory rates and the oxidative phosphorylation efficiency of isolated muscle mitochondria were not improved with cold-water immersions. The present study shows that acclimation to cold water only partially reproduced the fuel selection towards lipid oxidation that characterizes penguin acclimatization to marine life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barré H, Rouanet JL (1983) Calorigenic effect of glucagon and catecholamines in king penguin chicks. Am J Physiol 244:758–763

    Google Scholar 

  • Barré H, Roussel B (1986) Thermal and metabolic adaptation to first cold-water immersion in juvenile penguins. Am J Physiol 251:R456–R462

    PubMed  Google Scholar 

  • Barré H, Nedergaard J, Cannon B (1989a) Increased respiration in skeletal muscle mitochondria from cold-acclimated ducklings: uncoupling effects of free fatty acids. Comp Biochem Physiol 85B:343–348

    Google Scholar 

  • Barré H, Berne G, Brebion P, Cohen-Adad F, Rouanet JL (1989b) Loose-coupled mitochondria in chronic glucagon-treated hyperthermic ducklings. Am J Physiol 256:R1192–R1199

    PubMed  Google Scholar 

  • Bedu E, Chainier F, Sibille B, Meister R, Dallevet G, Garin D, Duchamp C (2002) Increased lipogenesis in isolated hepatocytes from cold-acclimated ducklings. Am J Physiol 283:R1245–R1253

    CAS  Google Scholar 

  • Bénistant C, Duchamp C, Cohen-Adad F, Rouanet JL, Barré H (1998) Increased in vitro fatty acid supply and cellular transport capacities in cold-acclimated ducklings (Cairina moschata). Am J Physiol 275:R683–R690

    PubMed  Google Scholar 

  • Bernard SF, Fayolle C, Robin JP, Groscolas R (2002) Glycerol and NEFA kinetics in long-term fasting king penguins: phase II versus phase III. J Exp Biol 205:2745–2754

    CAS  PubMed  Google Scholar 

  • Bevan RM, Woakes AJ, Butler PJ, Croxall JP (1995) Heart rate and oxygen consumption of exercising Gentoo penguins. Physiol Zool 68:855–877

    Article  Google Scholar 

  • Charrassin J, Bost C (2001) Utilisation of the oceanic habitat by king penguins over the annual cycle. Mar Ecol Prog Ser 221:285–298

    Article  Google Scholar 

  • Cherel Y, Durant JM, Lacroix A (2004) Plasma thyroid hormone pattern in king penguin chicks: a semi-altricial bird with an extended posthatching developmental period. Gen Comp Endocrinol 136:398–405

    Article  CAS  PubMed  Google Scholar 

  • Conley KE (2016) Mitochondria to motion: optimizing oxidative phosphorylation to improve exercise performance. J Exp Biol 219:243–249

    Article  PubMed  Google Scholar 

  • Dawson WR, Marsh RL, Yacoe ME (1983) Metabolic adjustments of small passerine birds for migration and cold. Am J Physiol 245:R755–R767

    CAS  PubMed  Google Scholar 

  • Duchamp C, Barré H (1993) Skeletal muscle as the major site of nonshivering thermogenesis in cold-acclimated ducklings. Am J Physiol 265:R1076–R1083

    CAS  PubMed  Google Scholar 

  • Duchamp C, Barré H, Delage D, Rouanet JL, Cohen-Adad F, Minaire Y (1989) Nonshivering thermogenesis and adaptation to fasting in king penguin chicks. Am J Physiol 257:R744–R751

    CAS  PubMed  Google Scholar 

  • Duchamp C, Barré H, Rouanet JL, Lanni A, Cohen-Adad F, Berne G, Brebion P (1991) Nonshivering thermogenesis in king penguin chicks. I. Role of skeletal muscle. Am J Physiol 261:R1438–R1445

    CAS  PubMed  Google Scholar 

  • Duchamp C, Cohen-Adad F, Rouanet JL, Barré H (1992) Histochemical arguments for muscular non-shivering thermogenesis in Muscovy ducklings. J Physiol 457:27–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duchamp C, Chatonnet J, Dittmar A, Barré H (1993) Increased role of skeletal muscle in the calorigenic response to glucagon of cold-acclimated ducklings. Am J Physiol 265:R1084–R1091

    CAS  PubMed  Google Scholar 

  • Duchamp C, Marmonier F, Denjean F, Lachuer J, Eldershaw TPD, Rouanet JL, Morales A, Meister R, Bénistant C, Roussel D, Barré H (1999) Regulatory, cellular and molecular aspects of avian muscle non-shivering thermogenesis. Ornis Fenn 76:151–165

    Google Scholar 

  • Dumonteil E, Barré H, Rouanet JL, Diarra M, Bouvier J (1994) Dual core and shell temperature regulation during sea acclimatization in Gentoo penguins (Pygoscelis papua). Am J Physiol 266:R1319–R1326

    CAS  PubMed  Google Scholar 

  • Fahlman A, Schmidt A, Handrich Y, Woakes AJ, Butler PJ (2005) Metabolism and thermoregulation during fasting in king penguins, Aptenodytes patagonicus, in air and water. Am J Physiol 289:R670–R679

    CAS  Google Scholar 

  • Froget G, Handrich Y, Le Maho Y, Rouanet JL, Woakes AJ, Butler PJ (2002) The heart rate/oxygen consumption relationship during cold exposure of the king penguin: a comparison with that during exercise. J Exp Biol 205:2511–2517

    CAS  PubMed  Google Scholar 

  • Froget G, Butler PJ, Woakes AJ, Fahlman A, Kuntz G, Le Maho Y, Handrich Y (2004) Heart rate and energetics of free-ranging king penguins (Aptenodytes patagonicus). J Exp Biol 207:3917–3926

    Article  CAS  PubMed  Google Scholar 

  • Guglielmo CG (2010) Move that fatty acid: fuel selection and transport in migratory birds and bats. Integr Comp Biol 50:336–345

    Article  PubMed  Google Scholar 

  • Handrich Y, Bevan RM, Charrassin JB, Butler PJ, Pütz K, Woakes AJ, Lage J, Le Maho Y (1997) Hypothermia in foraging king penguins. Nature 388:64–67

    Article  CAS  Google Scholar 

  • Hissa R (1988) Controlling mechanisms in avian temperature regulation: a review. Acta Physiol Scand 132:1–148

    Article  Google Scholar 

  • Humphries MM, Careau V (2011) Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution. Integr Comp Biol 51:419–431

    Article  PubMed  Google Scholar 

  • Kooyman GL, Davis RW, Croxall JP, Costa DP (1982) Diving depths and energy requirements of king penguins. Science 217:726–727

    Article  CAS  PubMed  Google Scholar 

  • Mathieu-Costello O, Agey PJ, Quintana ES, Rousey K, Wu L, Bernstein MH (1998) Fiber capillarization and ultrastructure of pigeon pectoralis muscle after cold acclimation. J Exp Biol 201:3211–3220

    CAS  PubMed  Google Scholar 

  • Monternier PA, Marmillot V, Rouanet JL, Roussel D (2014) Mitochondrial phenotypic flexibility enhances energy savings during winter fast in king penguin chicks. J Exp Biol 217:2691–2697

    Article  PubMed  Google Scholar 

  • Nagy KA, Kooyman GL, Ponganis PJ (2001) Energetic cost of foraging in free-diving emperor penguins. Physiol Biochem Zool 74:541–547

    Article  CAS  PubMed  Google Scholar 

  • Péron C, Weimerskirch H, Bost CA (2012) Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet islands, southern Indian Ocean. Proc R Soc B 279:2515–2523

    Article  PubMed  PubMed Central  Google Scholar 

  • Pütz K, Cherel Y (2005) The diving behavior of brooding king penguins (Aptenodytes patagonicus) from the Falkland Islands: variation in dive profiles and synchronous underwater swimming provide new insights into their foraging strategies. Mar Biol 147:281–290

    Article  Google Scholar 

  • Rey B, Halsey L, Dolmazon V, Rouanet JL, Roussel D, Handrich Y, Butler P, Duchamp C (2008) Long-term fasting decreases mitochondrial avian UCP-mediated oxygen consumption in hypometabolic king penguins. Am J Physiol 295:R92–R100

    Article  CAS  Google Scholar 

  • Rey B, Roussel D, Romestaing C, Belouze M, Rouanet JL, Desplanches D, Sibille B, Servais S, Duchamp C (2010) Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria. BMC Physiol 10:5e

    Article  Google Scholar 

  • Roussel D, Rouanet JL, Duchamp C, Barré H (1998) Effects of cold acclimation and palmitate on energy coupling in duckling skeletal muscle mitochondria. FEBS Lett 439:258–262

    Article  CAS  PubMed  Google Scholar 

  • Roussel D, Dumas JF, Simard G, Malthièry Y, Ritz P (2004) Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment. Biochem J 382:491–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skulachev VP, Maslov SP (1960) The role of nonphosphorylating oxidation in temperature regulation. Biochemistry 25:1058–1064

    Google Scholar 

  • Stahel CD, Nicol SC (1988) Ventilation and oxygen extraction in the little penguin (Eudyptula minor), at different temperatures in air and water. Respir Physiol 71:387–398

    Article  CAS  PubMed  Google Scholar 

  • Swanson DL, Vézina F (2016) Environmental, ecological and mechanistic drivers of avian seasonal metabolic flexibility in response to cold winters. J Ornithol (in press)

  • Talbot DA, Duchamp C, Rey B, Hanuise N, Rouanet JL, Sibille B, Brand MD (2004) Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins. J Physiol 558:123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teulier L, Rouanet JL, Letexier D, Romestaing C, Belouze M, Rey B, Duchamp C, Roussel D (2010) Cold-acclimation-induced non-shivering thermogenesis in birds is associated with upregulation of avian UCP but not with innate uncoupling or altered ATP efficiency. J Exp Biol 213:2476–2482

    Article  CAS  PubMed  Google Scholar 

  • Teulier L, Dégletagne C, Rey B, Tornos J, Keime C, de Dinechin M, Raccurt M, Rouanet JL, Roussel D, Duchamp C (2012) Selective upregulation of lipid metabolism in skeletal muscle of foraging juvenile king penguins: an integrative study. Proc R Soc B 279:2464–2472

    Article  PubMed  PubMed Central  Google Scholar 

  • Teulier L, Tornos J, Rouanet JL, Rey B, Roussel D (2013) Metabolic response to lipid infusion in fasting winter-acclimatized king penguin chicks (Aptenodytes patagonicus). Comp Biochem Physiol 165A:1

    Article  Google Scholar 

  • Toyomizu M, Ueda M, Sato S, Seki Y, Sato K, Akiba Y (2002) Cold-induced mitochondrial uncoupling and expression of chicken UCP and ANT mRNA in chicken skeletal muscle. FEBS Lett 529:313–318

    Article  CAS  PubMed  Google Scholar 

  • Ueda M, Watanabe K, Sato K, Akiba Y, Toyomizu M (2005) Possible role for avPGC-1α in the control of expression of fiber type, along with avUCP and avANT mRNAs in the skeletal muscles of cold-exposed chickens. FEBS Lett 579:11–17

    Article  CAS  PubMed  Google Scholar 

  • Vaillancourt E, Prud’Homme S, Haman F, Guglielmo C, Weber J (2005) Energetics of a long-distance migrant shorebird (Philomachus pugnax) during cold exposure and running. J Exp Biol 208:317–325

    Article  PubMed  Google Scholar 

  • Weber JM (2009) The physiology of long-distance migration: extending the limits of endurance metabolism. J Exp Biol 212:593–597

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Eyster K, Liu JS, Swanson DL (2015) Cross-training in birds: cold and exercise training produce similar changes in maximal metabolic output, muscle masses and myostatin expression in house sparrows (Passer domesticus). J Exp Biol 218:2190–2200

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The project was supported financially and logistically by the French Polar Institute (Institut Paul Emile Victor, IPEV—research program no. 131), and received a logistic support from the Terres Australes et Antarctiques Françaises.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Roussel.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teulier, L., Rey, B., Tornos, J. et al. Lipid-induced thermogenesis is up-regulated by the first cold-water immersions in juvenile penguins. J Comp Physiol B 186, 639–650 (2016). https://doi.org/10.1007/s00360-016-0975-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-0975-3

Keywords

Navigation